Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 1;8(2):1015-1020.
doi: 10.1039/c6sc02587k. Epub 2016 Sep 23.

Heptamethylindenyl (Ind*) enables diastereoselective benzamidation of cyclopropenes via Rh(iii)-catalyzed C-H activation

Affiliations

Heptamethylindenyl (Ind*) enables diastereoselective benzamidation of cyclopropenes via Rh(iii)-catalyzed C-H activation

Natthawat Semakul et al. Chem Sci. .

Abstract

The diastereoselective coupling of O-substituted arylhydroxamates and cyclopropenes mediated by Rh(iii) catalysis was successfully developed. Through ligand development, the diastereoselectivity of this reaction was improved using a heptamethylindenyl (Ind*) ligand, which has been rationalized using quantum chemical calculations. In addition, the nature of the O-substituted ester of benzhydroxamic acid proved important for high diastereoselectivity. This transformation tolerates a variety of benzamides and cyclopropenes that furnish cyclopropa[c]dihydroisoquinolones with high diastereocontrol, which could then be easily transformed into synthetically useful building blocks for pharmaceuticals and bio-active molecules.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (A) The use of cyclopropenes in Rh(iii) catalysis. (B) Examples of Cp ligands that improve selectivity. (C) This work.
Scheme 1
Scheme 1. Mechanistic experiments.
Scheme 2
Scheme 2. (A) Proposed reaction mechanism and (B) stereochemical model for diastereoselectivity. Gibbs energies in kcal mol–1.
Scheme 3
Scheme 3. Derivatizations of product.

References

    1. For the review on Rh(III) catalyzed C–H bond functionalization, see: Colby D. A., Bergman R. G., Ellman J. A., Chem. Rev., 2010, 110 , 624 –655 . - PMC - PubMed
    2. Satoh T., Miura M. Chem.–Eur. J. 2010;16:11212–11222. - PubMed
    3. Patureau F. W., Wencel-Delord J., Glorius F. Aldrichimica Acta. 2012;45:31–41.
    4. Song G. Y., Wang F., Li X. W. Chem. Soc. Rev. 2012;41:3651–3678. - PubMed
    5. Song G. Y., Li X. W. Acc. Chem. Res. 2015;48:1007–1020. - PubMed
    6. Zhu C., Wang R., Falck J. R. Chem.–Asian. J. 2012;7:1502–1514. - PubMed
    1. For the review:

    2. Rubin M., Rubina M., Gevorgyan V. Chem. Rev. 2007;107:3117–3179. - PubMed
    3. Rubina M., Rubin M., Gevorgyan V. J. Am. Chem. Soc. 2002;124:11566–11567. - PubMed
    4. Rubina M., Rubin M., Gevorgyan V. J. Am. Chem. Soc. 2003;125:7198–7199. - PubMed
    5. Rubina M., Rubin M., Gevorgyan V. J. Am. Chem. Soc. 2004;126:3688–3689. - PubMed
    6. Phan D. H. T., Kou K. G. M., Dong V. M. J. Am. Chem. Soc. 2010;132:16354–16355. - PubMed
    7. Tian B., Liu Q., Tong X. F., Tian P., Lin G. Q. Org. Chem. Front. 2014;1:1116–1122.
    8. Parra A., Amenos L., Guisan-Ceinos M., Lopez A., Ruano J. L. G., Tortosa M. J. Am. Chem. Soc. 2014;136:15833–15836. - PubMed
    9. Muller D. S., Marek I. J. Am. Chem. Soc. 2015;137:15414–15417. - PubMed
    1. Zhang H., Wang K., Wang B., Yi H., Hu F. D., Li C. K., Zhang Y., Wang J. B. Angew. Chem., Int. Ed. 2014;53:13234–13238. - PubMed
    1. Hyster T. K., Rovis T. Synlett. 2013;24:1842–1844. - PMC - PubMed
    1. Fukui M., Hoshino Y., Satoh T., Miura M., Tanaka K. Adv. Synth. Catal. 2014;356:1638–1644.
    2. Hoshino Y., Shibata Y., Tanaka K. Adv. Synth. Catal. 2014;356:1577–1585.
    3. Shibata Y., Tanaka K. Angew. Chem., Int. Ed. 2011;50:10917–10921. - PubMed

LinkOut - more resources