Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 1;8(4):2904-2913.
doi: 10.1039/c7sc00009j. Epub 2017 Jan 30.

Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights

Affiliations

Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights

Ane Orue et al. Chem Sci. .

Abstract

2-Hydroxydihydropyran-5-ones behave as excellent polyfunctional reagents able to react with enals through oxa-Michael/Michael process cascade under the combination of iminium and enamine catalysis. These racemic hemiacetalic compounds are used as unconventional O-pronucleophiles in the initial oxa-Michael reaction, also leading to the formation of a single stereoisomer under a dynamic kinetic resolution (DKR) process. Importantly, by using β-aryl or β-alkyl substituted α,β-unsaturated substrates as initial Michael acceptors either kinetically or thermodynamically controlled diastereoisomers were formed with high stereoselection through the careful selection of the reaction conditions. Finally, a complete experimental and computational study confirmed the initially proposed DKR process during the catalytic oxa-Michael/Michael cascade reaction and also explained the kinetic/thermodynamic pathway operating in each case.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Organocatalytic cascade processes initiated by conjugate addition of O-nucleophiles.
Scheme 2
Scheme 2. Enantioselective oxa-Michael/Michael cascade reaction between enals and hydroxypyranone 1.
Scheme 3
Scheme 3. Survey of transformations carried out on adducts 4, 5 and 6.
Fig. 1
Fig. 1. Linear correlation between %ee of catalyst 3a and product 6a.
Scheme 4
Scheme 4. Calculated catalytic cycle for the model reaction between 1 and 2a catalyzed by pyrrolidine (achiral model).
Fig. 2
Fig. 2. Energy diagram of the catalytic cycle illustrated in Scheme 4.
Fig. 3
Fig. 3. TS structures leading to compounds 4 and 5.
Scheme 5
Scheme 5. Possible intermediates involved in the kinetic resolution process.
Scheme 6
Scheme 6. Study of the resolution process.
Scheme 7
Scheme 7. Proposed catalytic cycles for DKR.

References

    1. Reyes E., Uria U., Vicario J. L., Carrillo L. Org. React. 2016;90:1. - PubMed
    2. Catalytic Asymmetric Conjugate Reactions, ed. A. Cordova, Wiley-VCH, Weinheim, 2010.
    3. Comprehensive Asymmetric Catalysis, ed. E. N. Jacobsen, A. Pfaltz and Y. Yamamoto, Springer-Verlag, Berlin, vol. 3, 1999.
    1. For some selected reviews, see:

    2. Hayashi Y. Chem. Sci. 2016;7:866. - PMC - PubMed
    3. Muzart J. Tetrahedron. 2013;69:6735.
    4. Pellissier H. Chem. Rev. 2013;113:442. - PubMed
    5. Ball C. J., Willis M. C. Eur. J. Org. Chem. 2013:425.
    6. Ricca E., Brucher B., Schrittwieser J. H. Adv. Synth. Catal. 2011;353:2239.
    7. Anderson E. A. Org. Biomol. Chem. 2011;9:3997. - PubMed
    8. Vlaar T., Ruijter E., Orru R. V. A. Adv. Synth. Catal. 2011;353:809.
    9. Nicolaou K. C., Chen J. S. Chem. Soc. Rev. 2009;38:2993. - PMC - PubMed
    1. For some selected reviews specifically focused on aminocatalysis, see:

    2. Paz B. M., Jiang H., Jørgensen K. A. Chem.–Eur. J. 2015;21:1846. - PubMed
    3. Holland M. C., Gilmour R. Angew. Chem., Int. Ed. 2015;54:3862. - PubMed
    4. Melchiorre P. Angew. Chem., Int. Ed. 2012;51:9748. - PubMed
    5. Melchiorre P., Marigo M., Carlone A., Bartoli G. Angew. Chem., Int. Ed. 2008;47:6138. - PubMed
    6. List B. Chem. Commun. 2006:819. - PubMed
    1. For some reviews, see:

    2. Volla C., Atodiresei I., Rueping M. Chem. Rev. 2014;114:2390. - PubMed
    3. Chen Y.-C. and Cui H.-L., Organocatalytic Cascade Reactions in Science of Synthesis, Asymmetric Organocatalysis, ed. B. List and K. Maruoka, Thieme: Stuttgart, 2012, vol. 2, p. 787.
    4. Bonne D., Constantieux T., Coquerel Y., Rodriguez J. Org. Biomol. Chem. 2012;10:3969. - PubMed
    5. Pellissier H. Adv. Synth. Catal. 2012;354:237.
    6. Grossmann A., Enders D. Angew. Chem., Int. Ed. 2012;51:314. - PubMed
    7. Westermann B., Ayaz M., van Berkel S. S. Angew. Chem., Int. Ed. 2010;49:846. - PubMed
    8. Grondal C., Jeanty M., Enders D. Nat. Chem. 2010;2:167. - PubMed
    1. For reviews, see:

    2. Galestokova Z., Sebesta R. Eur. J. Org. Chem. 2012:6688.
    3. Ruiz M., Lopez-Alvarado P., Giorgi G., Menendez J. C. Chem. Soc. Rev. 2011;40:3445. - PubMed
    4. Bonne D., Coquerel Y., Constantieux T., Rodriguez J. Tetrahedron: Asymmetry. 2010;21:1085.
    5. Lebel H., Marcoux J. F., Molinaro C., Charette A. B. Chem. Rev. 2003;103:977. - PubMed
    6. Caine D. Tetrahedron. 2001;57:2643.

LinkOut - more resources