Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 15;56(10):6013-6026.
doi: 10.1021/acs.inorgchem.7b00945. Epub 2017 Apr 28.

Hydrolysis in Acidic Environment and Degradation of Satraplatin: A Joint Experimental and Theoretical Investigation

Affiliations

Hydrolysis in Acidic Environment and Degradation of Satraplatin: A Joint Experimental and Theoretical Investigation

Ida Ritacco et al. Inorg Chem. .

Abstract

For the synthesis and selection of active platinum-based anticancer drugs that perform better than cisplatin and its analogues, six-coordinate octahedral Pt(IV) complexes appear to be promising candidates as, being kinetically more inert and more resistant to ligand substitution than four-coordinate Pt(II) centers, they are able to minimize unwanted side reactions with biomolecules prior to DNA binding. Due to their kinetic inertness, Pt(IV) complexes have also been exploited to bypass inconvenient intravenous administration. The most prominent example is satraplatin (Sat.) which is the first platinum antineoplastic agent reported to have oral activity. The present paper deals with a theoretical DFT investigation of the influence that the acidity of the biological environment can have on the activity of satraplatin and analogous octahedral Pt(IV) complexes having two carboxylates as axial ligands. Moreover, here the outcomes of a joint electrospray ionization mass spectrometry and DFT investigation of the fragmentation pathways of the protonated satraplatin are reported. Calculations show that the simulated acidic environment has an important impact on the satraplatin reactivity causing a significant lowering of the barrier that is necessary to overcome for the hydrolysis of the first acetate ligand to occur. Data from electrospray ionization mass spectrometry, 1H NMR, and potentiometric experiments strongly suggest that the loss of CH3COOH from the protonated satraplatin ion [Sat. + H]+ takes place almost immediately upon dissolution of satraplatin in methanol-water, D2O, and water solutions, respectively, at room temperature.

PubMed Disclaimer

LinkOut - more resources