Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Aug 1:122:244-253.
doi: 10.1016/j.neuropharm.2017.04.032. Epub 2017 Apr 25.

Emerging pharmacotherapies for alcohol use disorder

Affiliations
Review

Emerging pharmacotherapies for alcohol use disorder

Barbara J Mason. Neuropharmacology. .

Abstract

The identification of different stages within the alcohol use disorder (AUD) cycle that are linked to neurocircuitry changes in pathophysiology associated with the negative emotional states of abstinence has provided a view of medication development for AUD that emphasizes changes in the brain reward and stress systems. Alcohol use disorder can be defined as a chronic relapsing disorder that involves compulsive alcohol seeking and taking, loss of control over alcohol intake, and emergence of a negative emotional state during abstinence. The focus of early medications development was to block the motivation to seek alcohol in the binge/intoxication stage. More recent work has focused on reversing the motivational dysregulations associated with the withdrawal/negative affect and preoccupation/anticipation stages during protracted abstinence. Advances in our understanding of the neurocircuitry and neuropharmacological mechanisms that are involved in the development and maintenance of the withdrawal/negative affect stage using validated animal models have provided viable targets for future medications. Another major advance has been proof-of-concept testing of potential therapeutics and clinical validation of relevant pharmacological targets using human laboratory models of protracted abstinence. This review focuses on future targets for medication development associated with reversal of the loss of reward function and gain in brain stress function that drive negative reinforcement in the withdrawal/negative affect stage of addiction. Basic research has identified novel neurobiological targets associated with the withdrawal/negative affect stage and preoccupation/anticipation stage, with a focus on neuroadaptive changes within the extended amygdala that account for the transition to dependence and vulnerability to relapse. This article is part of the Special Issue entitled "Alcoholism".

Keywords: Alcohol use disorder; Alcoholism; Medications development; Neurobiology; Stress.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Novel targets by stage of the alcohol use disorder cycle with corresponding clinical states. Adapted by permission from Macmillan Publishers Ltd: NEUROPSYCHOPHARMACOLOGY (Koob GF, Volkow ND. Neuropsychopharmacology 2009;35:217–38), copyright 2009.

Similar articles

Cited by

References

    1. Abulseoud OA, Camsari UM, Ruby CL, Kasasbeh A, Choi S, Choi DS. Attenuation of ethanol withdrawal by ceftriaxone-induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology. 2014;39:1674–1684. - PMC - PubMed
    1. al’Absi M, Hatsukami D, Davis GL. Attenuated adrenocorticotropic responses to psychological stress are associated with early smoking relapse. Psychopharmacology. 2005;181:107–117. - PubMed
    1. Adinoff B, Junghanns K, Kiefer F, Krishnan-Sarin S. Suppression of the HPA axis stress-response: implications for relapse. Alcohol Clin Exp Res. 2005;29:1351–5. Erratum: 30(3):585. - PMC - PubMed
    1. Alaux-Cantin S, Buttolo R, Houchi H, Jeanblanc J, Naassila M. Memantine reduces alcohol drinking but not relapse in alcohol-dependent rats. Addict Biol. 2015;20:890–901. - PubMed
    1. Albeck DS, McKittrick CR, Blanchard DC, Blanchard RJ, Nikulina J, McEwen BS, Sakai RR. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain. J Neurosci. 1997;17:4895–903. - PMC - PubMed