Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun:35:7-14.
doi: 10.1016/j.cytogfr.2017.04.003. Epub 2017 Apr 23.

Dysfunctional T cell metabolism in the tumor microenvironment

Affiliations
Review

Dysfunctional T cell metabolism in the tumor microenvironment

Kathryn E Beckermann et al. Cytokine Growth Factor Rev. 2017 Jun.

Abstract

Metabolic and signaling pathways are integrated to determine T cell fate and function. As stimulated T cells gain distinct effector functions, specific metabolic programs and demands are also adopted. These changes are essential for T cell effector function, and alterations or dysregulation of metabolic pathways can modulate T cell function. One physiological setting that impacts T cell metabolism is the tumor microenvironment. The metabolism of cancer cells themselves can limit nutrients and accumulate waste products. In addition to the expression of inhibitory ligands that directly modify T cell physiology, T cell metabolism may be strongly inhibited in the tumor microenvironment. This suppression of T cell metabolism may inhibit effector T cell activity while promoting suppressive regulatory T cells, and act as a barrier to effective immunotherapies. A thorough understanding of the effect of the tumor microenvironment on the immune system will support the continued improvement of immune based therapies for cancer patients.

Keywords: Glycolysis; Immunotherapy; Mitochondria; Oxidative phosphorylation; T-cell.

PubMed Disclaimer

Figures

Fig.1
Fig.1
The metabolic programs of T cell subsets. Distinct T cell subsets utilize specific metabolic programs to support their functions. Each functional subset is characterized by signaling pathways, transcription factors, metabolic programs, and effector cytokines.
Fig. 2
Fig. 2
Tumor cells inhibit effector T cell metabolism and function through multiple means. Tumor cells express CD39 and CD73 that can produce adenosine from extracellular ATP and IDO1 that can both deplete tryptophan and produce kynurenine. The metabolism of tumor cells also consumes glucose and can lead to lactate accumulation, both of which can suppress effector T cells and promote Treg. PD-1 can also influence T cell metabolism to suppress glycolysis and promote oxidative metabolism.

Similar articles

Cited by

References

    1. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–524. http://dx.doi.org/10.1038/nrclinonc.2014.111. - DOI - PubMed
    1. Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity. 2013;39:11–26. http://dx.doi.org/10.1016/j.immuni.2013.07.008. - DOI - PubMed
    1. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. http://dx.doi.org/10.1056/nejmoa1200690. - DOI - PMC - PubMed
    1. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–1639. http://dx.doi.org/10.1056/NEJMoa1507643. - DOI - PMC - PubMed
    1. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373 150925150201006, http://dx.doi.org/10.1056/NEJMoa1510665. - DOI - PMC - PubMed