Dysfunctional T cell metabolism in the tumor microenvironment
- PMID: 28456467
- PMCID: PMC5710836
- DOI: 10.1016/j.cytogfr.2017.04.003
Dysfunctional T cell metabolism in the tumor microenvironment
Abstract
Metabolic and signaling pathways are integrated to determine T cell fate and function. As stimulated T cells gain distinct effector functions, specific metabolic programs and demands are also adopted. These changes are essential for T cell effector function, and alterations or dysregulation of metabolic pathways can modulate T cell function. One physiological setting that impacts T cell metabolism is the tumor microenvironment. The metabolism of cancer cells themselves can limit nutrients and accumulate waste products. In addition to the expression of inhibitory ligands that directly modify T cell physiology, T cell metabolism may be strongly inhibited in the tumor microenvironment. This suppression of T cell metabolism may inhibit effector T cell activity while promoting suppressive regulatory T cells, and act as a barrier to effective immunotherapies. A thorough understanding of the effect of the tumor microenvironment on the immune system will support the continued improvement of immune based therapies for cancer patients.
Keywords: Glycolysis; Immunotherapy; Mitochondria; Oxidative phosphorylation; T-cell.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Figures


Similar articles
-
Emerging concepts of T cell metabolism as a target of immunotherapy.Nat Immunol. 2016 Apr;17(4):364-8. doi: 10.1038/ni.3415. Nat Immunol. 2016. PMID: 27002844 Free PMC article.
-
Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.Cytokine Growth Factor Rev. 2017 Jun;35:15-25. doi: 10.1016/j.cytogfr.2017.04.001. Epub 2017 Apr 11. Cytokine Growth Factor Rev. 2017. PMID: 28442214 Review.
-
Editorial: Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment.Front Immunol. 2018 Dec 21;9:3080. doi: 10.3389/fimmu.2018.03080. eCollection 2018. Front Immunol. 2018. PMID: 30619380 Free PMC article. No abstract available.
-
Immunometabolism: A new target for improving cancer immunotherapy.Adv Cancer Res. 2019;143:195-253. doi: 10.1016/bs.acr.2019.03.004. Epub 2019 Apr 17. Adv Cancer Res. 2019. PMID: 31202359 Free PMC article. Review.
-
The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy.Elife. 2020 May 5;9:e55185. doi: 10.7554/eLife.55185. Elife. 2020. PMID: 32367803 Free PMC article. Review.
Cited by
-
Manipulating T-cell metabolism to enhance immunotherapy in solid tumor.Front Immunol. 2022 Dec 22;13:1090429. doi: 10.3389/fimmu.2022.1090429. eCollection 2022. Front Immunol. 2022. PMID: 36618408 Free PMC article. Review.
-
STING agonist, SMA-2, inhibits clear cell renal cell carcinoma through improving tumor microenvironment.Mol Cell Biochem. 2024 Jul;479(7):1697-1705. doi: 10.1007/s11010-024-04970-w. Epub 2024 Apr 9. Mol Cell Biochem. 2024. PMID: 38592428 Free PMC article.
-
Rho GTPase effectors and NAD metabolism in cancer immune suppression.Expert Opin Ther Targets. 2018 Jan;22(1):9-17. doi: 10.1080/14728222.2018.1413091. Epub 2017 Dec 10. Expert Opin Ther Targets. 2018. PMID: 29207896 Free PMC article. Review.
-
CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation.JCI Insight. 2020 Aug 20;5(16):e138729. doi: 10.1172/jci.insight.138729. JCI Insight. 2020. PMID: 32814710 Free PMC article.
-
Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity.Cancer Immunol Immunother. 2021 May;70(5):1165-1175. doi: 10.1007/s00262-020-02740-3. Epub 2020 Oct 26. Cancer Immunol Immunother. 2021. PMID: 33104836 Free PMC article. Review.
References
-
- Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11:509–524. http://dx.doi.org/10.1038/nrclinonc.2014.111. - DOI - PubMed
-
- Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity. 2013;39:11–26. http://dx.doi.org/10.1016/j.immuni.2013.07.008. - DOI - PubMed
-
- Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454. http://dx.doi.org/10.1056/nejmoa1200690. - DOI - PMC - PubMed
-
- Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–1639. http://dx.doi.org/10.1056/NEJMoa1507643. - DOI - PMC - PubMed
-
- Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373 150925150201006, http://dx.doi.org/10.1056/NEJMoa1510665. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials