Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Aug;11(1):1-15.
doi: 10.1016/0168-1702(88)90063-9.

Current approaches to the development of vaccines effective against parainfluenza and respiratory syncytial viruses

Affiliations
Review

Current approaches to the development of vaccines effective against parainfluenza and respiratory syncytial viruses

B R Murphy et al. Virus Res. 1988 Aug.

Abstract

Vaccines against parainfluenza (PIV) and respiratory syncytial viruses (RSV) that are currently being developed include both live and subunit vaccines. Candidate live PIV vaccines that have been found to be attenuated and efficacious in rodents or primate models are (1) cold-adapted, temperature-sensitive mutants of PIV-type 3 that have been serially passaged at low temperature (20 degrees C) in simian kidney tissue culture; (2) protease-activation mutants (PIV-1-Sendai), which have mutations that decrease the cleavability of their F glycoprotein by host cell protease; (3) an animal virus, bovine PIV-3 virus, which is antigenically related to the human PIV-3 virus, and (4) vaccinia recombinant viruses bearing RSV or PIV-3 glycoproteins. Subunit RSV and PIV-3 viruses are being produced and evaluated as immunogens. A major concern with these vaccines is the possibility of disease potentiation following virus infection as occurred previously with formalin-inactivated measles and RSV vaccines. Studies indicate that PIV-3 and RSV glycoprotein vaccines are immunogenic and efficacious in animals but insufficient data exist to estimate their capacity to potentiate disease. However, since a cotton rat model is available to detect potentiated disease resulting from infection of cotton rats previously immunized with formalin-inactivated RSV vaccine, it is now possible to systematically evaluate new vaccines in experimental animals for disease potentiation before studies are initiated in humans. It is likely within the next several years that one or more of these PIV or RSV vaccines will be tested in humans for safety and immunogenicity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources