Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul:55:177-189.
doi: 10.1016/j.neurobiolaging.2017.03.023. Epub 2017 Apr 5.

Amyloidosis and neurodegeneration result in distinct structural connectivity patterns in mild cognitive impairment

Affiliations
Free article

Amyloidosis and neurodegeneration result in distinct structural connectivity patterns in mild cognitive impairment

Thomas Jacquemont et al. Neurobiol Aging. 2017 Jul.
Free article

Abstract

Alzheimer's disease (AD) is increasingly considered as a disconnection syndrome. Previous studies of the structural connectome in early AD stages have focused on mild cognitive impaired subjects (MCI), considering them as a homogeneous group. We studied 168 subjects from the Alzheimer's Disease Neuroimaging Initiative database (116 MCI and 52 cognitively normal subjects). Biomarker-based stratification using amyloid biomarkers (AV45 PET) and neurodegeneration biomarkers (MRI and FDG PET) led to 4 subgroups based on amyloid positivity (A+/-) and neurodegeneration positivity (N+/-): A-N-, A+N-, A-N+, and A+N+. Using diffusion MRI, we showed that both MCI A-N+ and MCI A+N+ subjects displayed an alteration of the white matter in the fornix and a significant bihemispheric network of decreased connections. These network alterations in MCI A+N+ are stronger and more focal than those of MCI A-N+. Only MCI A+N+ subjects exhibited specific changes in hippocampal connectivity and an AD-like alteration pattern. Our results indicate that the connectome disintegration pattern of MCI subgroups differ with respect to brain amyloid and neurodegeneration. Each of these 2 AD biomarkers induces a connectome alteration that is maximal when they coexist.

Keywords: Alzheimer's disease; Biomarkers; MCI; Network analysis; Structural connectome.

PubMed Disclaimer

Publication types

MeSH terms

Supplementary concepts