Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 23;33(20):4890-4902.
doi: 10.1021/acs.langmuir.6b04474. Epub 2017 May 10.

Purely Visible-Light-Induced Photochromism in Ag-TiO2 Nanoheterostructures

Affiliations

Purely Visible-Light-Induced Photochromism in Ag-TiO2 Nanoheterostructures

D M Tobaldi et al. Langmuir. .

Abstract

We report titania nanoheterostructures decorated with silver, exhibiting tuneable photochromic properties for the first time when stimulated only by visible white light (domestic indoor lamp), with no UV wavelengths. Photochromic materials show reversible color changes under light exposure. However, all inorganic photochromic nanoparticles (NPs) require UV light to operate. Conventionally, multicolor photochromism in Ag-TiO2 films involves a change in color to brownish-gray during UV-light irradiation (i.e., reduction of Ag+ to Ag0) and a (re)bleaching (i.e., (re)oxidation of Ag0 to colorless Ag+) upon visible-light exposure. In this work, on the contrary, we demonstrate visible-light-induced photochromism (ranging from yellow to violet) of 1-10 mol % Ag-modified titania NPs using both spectroscopic and colorimetric CIEL*a*b* analyses. This is not a bleaching of the UV-induced color but a change in color itself under exposure to visible light, and it is shown to be a completely different mechanism-driven by the interfacial charge transfer of an electron from the valence band of TiO2 to that of the AgxO clusters that surround the titania-to the usual UV-triggered photochromism reported in titania-based materials. The quantity of Ag or irradiation time dictated the magnitude and degree of tuneability of the color change, from pale yellow to dark blue, with a rapid change visible only after a few seconds, and the intensity and red shift of surface plasmon resonance induced under visible light also increased. This effect was reversible after annealing in the dark at 100 °C/15 min. Photocatalytic activity under visible light was also assessed against the abatement of nitrogen oxide pollutants, for interior use, therefore showing the coexistence of photochromism and photocatalysis-both triggered by the same wavelength-in the same material, making it a multifunctional material. Moreover, we also demonstrate and explain why X-ray photoelectron spectroscopy is an unreliable technique with such materials.

PubMed Disclaimer

Publication types

LinkOut - more resources