Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul:143:237-245.
doi: 10.1016/j.antiviral.2017.04.018. Epub 2017 Apr 29.

Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses

Affiliations

Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses

Tomoya Tokunaga et al. Antiviral Res. 2017 Jul.

Abstract

Bornaviruses, non-segmented, negative-strand RNA viruses, are emerging agents with the potential for causing various types of neurological symptoms. Previous studies have shown that ribavirin, a nucleic acid analog with broad-spectrum antiviral activity, has a potent antiviral effect on infections with a mammalian bornavirus, Borna disease virus (BoDV-1), as well as avian bornaviruses. However, ribavirin-based treatment does not eliminate bornaviruses from persistently infected cells and viral replication resumes after treatment cessation. Therefore, the development of a novel effective anti-bornavirus treatment is needed. To identify such agents, we screened nucleoside/nucleotide mimetics for agents with anti-bornavirus activity. We used Vero cells infected with recombinant BoDV-1 carrying Gaussia luciferase to monitor BoDV-1 replication and found that favipiravir (T-705) is a potent inhibitor of BoDV-1 replication. T-705 suppressed BoDV-1 replication in a dose- and time-dependent manner during the observation period of 4 weeks. Notably, no increase in luciferase activity or in the number of BoDV-1-positive cells was detected in the at least 4 weeks following T-705 removal. Finally, we demonstrated that T-705 effectively suppressed viral replication of both BoDV-1 and an avian bornavirus, suggesting that T-705 may have a strong antiviral activity against a broad range of bornaviruses. Our findings provide a novel and effective option for treating persistent bornavirus infection.

Keywords: Avian bornavirus; Borna disease virus; Favipiravir; Replication.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources