Risk for Incident Heart Failure: A Subject-Level Meta-Analysis From the Heart "OMics" in AGEing (HOMAGE) Study
- PMID: 28465299
- PMCID: PMC5524083
- DOI: 10.1161/JAHA.116.005231
Risk for Incident Heart Failure: A Subject-Level Meta-Analysis From the Heart "OMics" in AGEing (HOMAGE) Study
Abstract
Background: To address the need for personalized prevention, we conducted a subject-level meta-analysis within the framework of the Heart "OMics" in AGEing (HOMAGE) study to develop a risk prediction model for heart failure (HF) based on routinely available clinical measurements.
Methods and results: Three studies with elderly persons (Health Aging and Body Composition [Health ABC], Valutazione della PREvalenza di DIsfunzione Cardiaca asinTOmatica e di scompenso cardiaco [PREDICTOR], and Prospective Study of Pravastatin in the Elderly at Risk [PROSPER]) were included to develop the HF risk function, while a fourth study (Anglo-Scandinavian Cardiac Outcomes Trial [ASCOT]) was used as a validation cohort. Time-to-event analysis was conducted using the Cox proportional hazard model. Incident HF was defined as HF hospitalization. The Cox regression model was evaluated for its discriminatory performance (area under the receiver operating characteristic curve) and calibration (Grønnesby-Borgan χ2 statistic). During a follow-up of 3.5 years, 470 of 10 236 elderly persons (mean age, 74.5 years; 51.3% women) developed HF. Higher age, BMI, systolic blood pressure, heart rate, serum creatinine, smoking, diabetes mellitus, history of coronary artery disease, and use of antihypertensive medication were associated with increased HF risk. The area under the receiver operating characteristic curve of the model was 0.71, with a good calibration (χ2 7.9, P=0.54). A web-based calculator was developed to allow easy calculations of the HF risk.
Conclusions: Simple measurements allow reliable estimation of the short-term HF risk in populations and patients. The risk model may aid in risk stratification and future HF prevention strategies.
Keywords: heart failure; meta‐analysis; risk factor; risk prediction.
© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Figures
References
-
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez‐Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. - PubMed
-
- Krum H, Abraham WT. Heart failure. Lancet. 2009;373:941–955. - PubMed
-
- Poppe KK, Doughty RN. Outcomes in patients with heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10:503–510. - PubMed
-
- Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, Lopez‐Jaramillo P, Leiter LA, Dans A, Avezum A, Piegas LS, Parkhomenko A, Keltai K, Keltai M, Sliwa K, Peters RJ, Held C, Chazova I, Yusoff K, Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Sanchez‐Vallejo G, McKelvie R, Pogue J, Jung H, Gao P, Diaz R, Lonn E. Cholesterol lowering in intermediate‐risk persons without cardiovascular disease. N Engl J Med. 2016;374:2021–2031. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
