Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov 5;263(31):16179-84.

Two transduction sequences are necessary for neutrophil activation by receptor agonists

Affiliations
  • PMID: 2846536
Free article

Two transduction sequences are necessary for neutrophil activation by receptor agonists

B Dewald et al. J Biol Chem. .
Free article

Abstract

The effects of 17-hydroxywortmannin (HWT), a powerful inhibitor of the respiratory burst associated with phagocytosis (Baggiolini, M., Dewald, B., Schnyder, J., Ruch, W., Cooper, P. H., and Payne, T. G. (1987) Exp. Cell Res. 169, 408-418), were studied in human neutrophils stimulated with chemotactic agonists or phorbol myristate acetate. At nanomolar concentrations HWT inhibited superoxide production and the release of granule contents induced by N-formyl-Met-Leu-Phe, C5a, platelet-activating factor, and leukotriene B4, but not by phorbol myristate acetate, indicating that it interferes with receptor-mediated activation of the neutrophils, without directly affecting protein kinase C (Ca2+/phospholipid-dependent enzyme), the NADPH-oxidase, or the process of granule exocytosis. Moreover, HWT did not influence agonist-induced [Ca2+]i changes, indicating that it does not interfere with the function of agonist receptors, G-proteins or the phosphatidylinositol-specific phospholipase C. By studying the effect of HWT on the respiratory burst elicited in normal and Ca2+-depleted cells by combined stimulation with N-formyl-Met-Leu-Phe and phorbol myristate acetate, evidence was obtained that two transduction sequences, both of which are G-protein-dependent, are necessary for the induction of the response by receptor agonists. One sequence is Ca2+-dependent, HWT-insensitive, and leads to activation of protein kinase C, the other is Ca2+-independent and HWT-sensitive. Ca2+ depletion, which blocks the first, and HWT, which blocks the second, can be used to show that both processes must be functional for the transduction of agonist signals into a respiratory burst response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources