Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 23;11(5):4808-4815.
doi: 10.1021/acsnano.7b01185. Epub 2017 May 8.

Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode

Affiliations

Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode

Taeseung Yoon et al. ACS Nano. .

Abstract

Controlling the morphology of nanostructured silicon is critical to improving the structural stability and electrochemical performance in lithium-ion batteries. The use of removable or sacrificial templates is an effective and easy route to synthesize hollow materials. Herein, we demonstrate the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal-organic framework (MOF) as an anode material with outstanding electrochemical properties. The m-Si HC architecture with the mesoporous external shell (∼15 nm) and internal void (∼60 nm) can effectively accommodate volume variations and relieve diffusion-induced stress/strain during repeated cycling. In addition, this cube architecture provides a high electrolyte contact area because of the exposed active site, which can promote the transportation of Li ions. The well-designed m-Si HC with carbon coating delivers a high reversible capacity of 1728 mAhg-1 with an initial Coulombic efficiency of 80.1% after the first cycle and an excellent rate capability of >1050 mAhg-1 even at a 15 C-rate. In particular, the m-Si HC anode effectively suppresses electrode swelling to ∼47% after 100 cycles and exhibits outstanding cycle stability of 850 mAhg-1 after 800 cycles at a 1 C-rate. Moreover, a full cell (2.9 mAhcm-2) comprising a m-Si HC-graphite anode and LiCoO2 cathode exhibits remarkable cycle retention of 72% after 100 cycles at a 0.2 C-rate.

Keywords: hollow structure; lithium-ion batteries; mesoporous structure; metal−organic framework; silicon anode.

PubMed Disclaimer

Publication types

LinkOut - more resources