Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation
- PMID: 28468851
- PMCID: PMC5483921
- DOI: 10.1128/JCM.00363-17
Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation
Abstract
Whole-genome sequencing (WGS) makes it possible to determine the relatedness of bacterial isolates at a high resolution, thereby helping to characterize outbreaks. However, for Staphylococcus aureus, the accumulation of within-host diversity during carriage might limit the interpretation of sequencing data. In this study, we hypothesized the converse, namely, that within-host diversity can in fact be exploited to reveal the involvement of long-term carriers (LTCs) in outbreaks. We analyzed WGS data from 20 historical outbreaks and applied phylogenetic methods to assess genetic relatedness and to estimate the time to most recent common ancestor (TMRCA). The findings were compared with the routine investigation results and epidemiological evidence. Outbreaks with epidemiological evidence for an LTC source had a mean estimated TMRCA (adjusted for outbreak duration) of 243 days (95% highest posterior density interval [HPD], 143 to 343 days) compared with 55 days (95% HPD, 28 to 81 days) for outbreaks lacking epidemiological evidence for an LTC (P = 0.004). A threshold of 156 days predicted LTC involvement with a sensitivity of 0.875 and a specificity of 1. We also found 6/20 outbreaks included isolates with differing antimicrobial susceptibility profiles; however, these had only modestly increased pairwise diversity (mean 17.5 single nucleotide variants [SNVs] [95% confidence interval {CI}, 17.3 to 17.8]) compared with isolates with identical antibiograms (12.7 SNVs [95% CI, 12.5 to 12.8]) (P < 0.0001). Additionally, for 2 outbreaks, WGS identified 1 or more isolates that were genetically distinct despite having the outbreak pulsed-field gel electrophoresis (PFGE) pulsotype. The duration-adjusted TMRCA allowed the involvement of LTCs in outbreaks to be identified and could be used to decide whether screening for long-term carriage (e.g., in health care workers) is warranted. Requiring identical antibiograms to trigger investigation could miss important contributors to outbreaks.
Keywords: MRSA; Staphylococcus aureus; outbreaks; whole-genome sequencing.
Copyright © 2017 Gordon et al.
Figures
References
-
- Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ. 2013. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 13:130–136. doi:10.1016/S1473-3099(12)70268-2. - DOI - PMC - PubMed
-
- Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, Sanders M, Enright MC, Dougan G, Bentley SD, Parkhill J, Fraser LJ, Betley JR, Schulz-Trieglaff OB, Smith GP, Peacock SJ. 2012. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:2267–2275. doi:10.1056/NEJMoa1109910. - DOI - PMC - PubMed
-
- Eyre DW, Golubchik T, Gordon NC, Bowden R, Piazza P, Batty EM, Ip CL, Wilson DJ, Didelot X, O'Connor L, Lay R, Buck D, Kearns AM, Shaw A, Paul J, Wilcox MH, Donnelly PJ, Peto TE, Walker AS, Crook DW. 2012. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2:e001124. doi:10.1136/bmjopen-2012-001124. - DOI - PMC - PubMed
-
- Tong SY, Holden MT, Nickerson EK, Cooper BS, Koser CU, Cori A, Jombart T, Cauchemez S, Fraser C, Wuthiekanun V, Thaipadungpanit J, Hongsuwan M, Day NP, Limmathurotsakul D, Parkhill J, Peacock SJ. 2015. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res 25:111–118. doi:10.1101/gr.174730.114. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
