Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 5;130(9):1085-1092.
doi: 10.4103/0366-6999.204920.

Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease

Affiliations

Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease

Si-Yue Li et al. Chin Med J (Engl). .

Abstract

Background: Parkinson's disease (PD) patients with long-term levodopa (L-DOPA) treatment are suffering from severe circadian dysfunction. However, it is hard to distinguish that the circadian disturbance in patients is due to the disease progression itself, or is affected by L-DOPA replacement therapy. This study was to investigate the role of L-DOPA on the circadian dysfunction in a rat model of PD.

Methods: The rat model of PD was constructed by a bilateral striatal injection with 6-hydroxydopamine (6-OHDA), followed by administration of saline or 25 mg/kg L-DOPA for 21 consecutive days. Rotarod test, footprint test, and open-field test were carried out to evaluate the motor function. Striatum, suprachiasmatic nucleus (SCN), liver, and plasma were collected at 6:00, 12:00, 18:00, and 24:00. Quantitative real-time polymerase chain reaction was used to examine the expression of clock genes. Enzyme-linked immunosorbent assay was used to determine the secretion level of cortisol and melatonin. High-performance liquid chromatography was used to measure the neurotransmitters. Analysis of variance was used for data analysis.

Results: L-DOPA alleviated the motor deficits induced by 6-OHDA lesions in the footprint and open-field test ( P < 0.01, P < 0.001, respectively). After L-DOPA treatment, Bmal1 decreased in the SCN compared with 6-OHDA group at 12:00 ( P < 0.01) and 24:00 ( P < 0.001). In the striatum, the expression of Bmal1, Rorα was lower than that in the 6-OHDA group at 18:00 (P < 0.05) and L-DOPA seemed to delay the peak of Per2 to 24:00. In liver, L-DOPA did not affect the rhythmicity and expression of these clock genes (P > 0.05). In addition, the cortisol secretion was increased (P > 0.05), but melatonin was further inhibited after L-DOPA treatment at 6:00 (P < 0.01).

Conclusions: In the circadian system of advanced PD rat models, circadian dysfunction is not only contributed by the degeneration of the disease itself but also long-term L-DOPA therapy may further aggravate it.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Motor deficiency in 6-OHDA rats and L-DOPA improved it. (a) A simple illustration of the experimental procedure. (b) The body weight measurement (n = 14 for each group). (c) Rotarod test (n = 14 for each group, *P < 0.01). (d) Footprint test (n = 14 for each group, P < 0.001) and (e) Open field test (n = 14 for each group, *P < 0.01, †P < 0.001). (f and g) Loss of TH neurons in the substantia nigra of 6-OHDA lesioned rats, as revealed by western blotting (n = 3 for each group, *P < 0.01) and immunofluorescence (n = 2 for each group). 6-OHDA: 6-hydroxydopamine.
Figure 2
Figure 2
QPCR analysis of the mRNA level of clock genes in the SCN (a-d), striatum (e-h) and liver (i-l). The left side of the brain was used for QPCR analysis, n = 3 for each time point, equals to n = 12 in each group. *P < 0.05, †P < 0.01, ‡P < 0.001 for 6-OHDA group versus sham group; §P < 0.05, ||P < 0.01 for 6-OHDA group versus L-DOPA group. 6-OHDA: 6-hydroxydopamine; SCN: Suprachiasmatic nucleus; QPCR: Quantitative polymerase chain reaction.
Figure 3
Figure 3
The concentrations of cortisol (a) and melatonin (b) in plasma were detected by ELISA method and expressed as ng/ml. n = 3 for each time point, equals to n = 12 in each group. *P < 0.01 for 6-OHDA group versus L-DOPA group. 6-OHDA: 6-hydroxydopamine; ELISA: Enzyme-linked immunosorbent assay.
Figure 4
Figure 4
Neurotransmitters content of DA, DOPAC, 5-HIAA were analyzed in the striatum (a-d) with HPLC, and the results were expressed as ng/mg wet tissue. The right side of the brain was used for HPLC analysis, n = 3 for each time point, equals to n = 12 in each group. *P < 0.05 for 6-OHDA group versus sham group. 6-OHDA: 6-hydroxydopamine; HPLC: High performance liquid chromatography.

Similar articles

Cited by

References

    1. Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, et al. Parkinson's disease in China: Prevalence in Beijing, Xian, and Shanghai. Lancet. 2005;365:595–7. doi: 10.1016/S0140-6736(05)17909-4. - PubMed
    1. Bonuccelli U, Del Dotto P, Lucetti C, Petrozzi L, Bernardini S, Gambaccini G, et al. Diurnal motor variations to repeated doses of levodopa in Parkinson's disease. Clin Neuropharmacol. 2000;23:28–33. - PubMed
    1. Faludi B, Janszky J, Komoly S, Kovács N. Sleep disturbances in Parkinson's disease: Characteristics, evaluation and therapeutic approaches. Orv Hetil. 2015;156:1091–9. doi: 10.1556/650.2015.30191. - PubMed
    1. Struck LK, Rodnitzky RL, Dobson JK. Circadian fluctuations of contrast sensitivity in Parkinson's disease. Neurology. 1990;40(3 Pt 1):467–70. - PubMed
    1. Oh YS, Kim JS, Lee KS. Orthostatic and supine blood pressures are associated with white matter hyperintensities in Parkinson disease. J Mov Disord. 2013;6:23–7. doi: 10.14802/jmd.13006. - PMC - PubMed