Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 19:8:208.
doi: 10.3389/fphar.2017.00208. eCollection 2017.

Plant-Produced Asialo-Erythropoietin Restores Pancreatic Beta-Cell Function by Suppressing Mammalian Sterile-20-like Kinase (MST1) and Caspase-3 Activation

Affiliations

Plant-Produced Asialo-Erythropoietin Restores Pancreatic Beta-Cell Function by Suppressing Mammalian Sterile-20-like Kinase (MST1) and Caspase-3 Activation

Elena Arthur et al. Front Pharmacol. .

Abstract

Pancreatic beta-cell death adversely contributes to the progression of both type I and II diabetes by undermining beta-cell mass and subsequently diminishing endogenous insulin production. Therapeutics to impede or even reverse the apoptosis and dysfunction of beta-cells are urgently needed. Asialo-rhuEPO, an enzymatically desialylated form of recombinant human erythropoietin (rhuEPO), has been shown to have cardioprotective and neuroprotective functions but with no adverse effects like that of sialylated rhuEPO. Heretofore, the anti-apoptotic effect of asialo-rhuEPO on pancreatic beta-cells has not been reported. In the current study, we investigated the cytoprotective properties of plant-produced asialo-rhuEPO (asialo-rhuEPOP) against staurosporine-induced cell death in the pancreatic beta-cell line RIN-m5F. Our results showed that 60 IU/ml asialo-rhuEPOP provided 41% cytoprotection while 60 IU/ml rhuEPO yielded no effect. Western blotting results showed that asialo-rhuEPOP treatment inhibited both MST1 and caspase-3 activation with the retention of PDX1 and insulin levels close to untreated control cells. Our study provides the first evidence indicating that asialo-rhuEPOP-mediated protection involves the reduction of MST1 activation, which is considered a key mediator of apoptotic signaling in beta-cells. Considering the many advantages its plant-based expression, asialo-rhuEPOP could be potentially developed as a novel and inexpensive agent to treat or prevent diabetes after further performing studies in cell-based and animal models of diabetes.

Keywords: MST1; asialo-rhuEPO; cytoprotection; insulin secretion; pancreatic beta-cell death.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Current view on how diabetic stimuli lead to activation of MST1 causing apoptosis and beta-cell dysfunction adopted from Ardestani et al. (2014), and how EPO and asialo-EPO display their cytoprotective functions via potentially binding to homodimeric EPOR or EPOR and β-CR heterodimeric receptor summarized from Brines and Cerami (2005, 2008). Cl MST1: Cleaved MST1.
FIGURE 2
FIGURE 2
Dose-dependent increase in cytotoxicity (A), caspase-3 activation and MST1 activation (B) in RIN-m5F cells incubated with 0–0.6 μM STS for 24 h. The EC50 for STS on RIN-m5F beta-cells was determined by their cytotoxicities.
FIGURE 3
FIGURE 3
Cytoprotective effects of asialo-rhuEPOP against STS-induced apoptosis in RIN-m5F cells. (A) Cytoprotective effects of 20, 40, 60, 80, and 100 IU asialo-rhuEPOP against 0.123 μM STS-induced cell death. (B) Cytoprotective effects of 60 IU asialo-rhuEPOP and rhuEPOM against 0.123 μM STS-induced cell death. Data represent the average ± SE. Different letters labeled represent significant difference at p<0.05 level.
FIGURE 4
FIGURE 4
Western blot of MST1 (A), Caspase-3 (B), Bax and Bcl-2 (C). The levels of these proteins were measured in cell lysates prepared from cells treated with PBS containing 0.1% BSA (vehicle control), 0.123 μM STS, 0.123 μM STS+60 IU/ml rhuEPOM or 0.123 μM STS+60 IU/ml asialo-rhuEPOP. Active MST1 and caspase-3 were detected using an anti-MST1 and anti-caspase-3 antibody, respectively, which also cross-react with proMST1 and procaspase-3. Bax and Bcl-2 specific antibodies were used to detect these proteins. β-Actin was used as internal control. The experiment was repeated twice. All data plotted are the average of two independent experiments ± SD. Different letters labeled represent significant difference at p < 0.05 level.
FIGURE 5
FIGURE 5
Western blot of AKT. The ratio of AKT and p-AKT were measured in cell lysates prepared from cells treated with PBS containing 0.1% BSA (vehicle control), 0.123 μM STS, 0.123 μM STS+60 IU/ml rhuEPOM or 0.123 μM STS+60 IU/ml asialo-rhuEPOP. For detection of p-AKT and AKT, the blot was probed with anti-p-AKT antibody first followed by stripping the blot and re-probing with anti-total AKT antibody. The experiment was repeated twice. All data plotted are the average of two independent experiments ± SD. Different letters labeled represent significant difference at p < 0.05 level.
FIGURE 6
FIGURE 6
Western blot of PDX1 (A) and the levels of secreted insulin in cultured medium (B). (A) The levels of PDX1 protein were measured in cell lysates prepared from cells treated with PBS containing 0.1% BSA (vehicle control), 0.123 μM STS, 0.123 μM STS+60 IU/ml rhuEPOM, or 0.123 μM STS+60 IU/ml asialo-rhuEPOP. (B) Secreted insulin in cultured medium. Secreted insulin levels were measured in media from above four cultures. The measurement was repeated three times. The experiment was repeated twice. All data plotted are the average of two independent experiments ± SD. Different letters labeled represent significant difference at p < 0.05 level.

Similar articles

Cited by

References

    1. Akiyoshi H., Nakaya Y. (2000). Effect of PKC on glucose-mediated insulin secretion in HIT-T15 cells. JOP 1 49–57. - PubMed
    1. America’s Biopharmaceutical Research Companies (2014). Medicines in Development for Diabetes, 2014 Report. Available at: http://www.phrma.org/sites/default/files/pdf/diabetes2014.pdf [accessed April 15 2017].
    1. Ardestani A., Paroni F., Azizi Z., Kaur S., Khobragade V., Yuan T., et al. (2014). MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat. Med. 20 385–397. 10.1038/nm.3482 - DOI - PMC - PubMed
    1. Avruch J., Zhou D., Fitamant J., Bardeesy N., Mou F., Barrufet L. R. (2012). Protein kinases of the Hippo pathway: regulation and substrates. Semin. Cell Dev. Biol. 23 770–784. 10.1016/j.semcdb.2012.07.002 - DOI - PMC - PubMed
    1. Bennett C. L., Silver S. M., Samaras A. T., Blau C. A., Gleason K. J., Barnato S. E., et al. (2008). Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 299 914–924. 10.1001/jama.299.8.914 - DOI - PubMed