H-Bond Self-Assembly: Folding versus Duplex Formation
- PMID: 28470070
- PMCID: PMC5469522
- DOI: 10.1021/jacs.7b01357
H-Bond Self-Assembly: Folding versus Duplex Formation
Abstract
Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




















References
-
- Anfinsen C. B. Science 1973, 181, 223.10.1126/science.181.4096.223. - DOI - PubMed
- Branden C.; Tooze J.. Introduction to Protein Structure, 2nd ed.; Garland Science: New York, 1999.
- Bikard D.; Loot C.; Baharoglu Z.; Mazel D. Microbiol. Mol. Biol. Rev. 2010, 74, 570.10.1128/MMBR.00026-10. - DOI - PMC - PubMed
- Wells R. D. Trends Biochem. Sci. 2007, 32, 271.10.1016/j.tibs.2007.04.003. - DOI - PubMed
- Burge S.; Parkinson G. N.; Hazel P.; Todd A. K.; Neidle S. Nucleic Acids Res. 2006, 34, 5402.10.1093/nar/gkl655. - DOI - PMC - PubMed
-
- Ellington A. D.; Szostak J. W. Nature 1990, 346, 818.10.1038/346818a0. - DOI - PubMed
- Stoltenburg R.; Reinemann C.; Strehlitz B. Biomol. Eng. 2007, 24, 381.10.1016/j.bioeng.2007.06.001. - DOI - PubMed
- Tan W.; Wang K.; Drake T. J. Curr. Opin. Chem. Biol. 2004, 8, 547.10.1016/j.cbpa.2004.08.010. - DOI - PubMed
-
- Blackburn G. M.; Gait M. J.; Loakes D.; Williams D. M.. Nucleic Acids in Chemistry and Biology, 3rd ed.; RSC Publishing: London, 2006.
- Conn G. L.; Draper D. E. Curr. Opin. Struct. Biol. 1998, 8, 278.10.1016/S0959-440X(98)80059-6. - DOI - PubMed
- Bevilacqua P. C.; Blose J. M. Annu. Rev. Phys. Chem. 2008, 59, 79.10.1146/annurev.physchem.59.032607.093743. - DOI - PubMed
- Rana T. M. Nat. Rev. Mol. Cell Biol. 2007, 8, 23.10.1038/nrm2085. - DOI - PubMed
-
- Kramer R.; Lehn J.-M.; Marquis-Rigault A. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5394.10.1073/pnas.90.12.5394. - DOI - PMC - PubMed
- Marquis A.; Smith V.; Harrowfield J.; Lehn J.-M.; Herschbach H.; Sanvito R.; Leize-Wagner E.; van Dorsselaer A. Chem. - Eur. J. 2006, 12, 5632.10.1002/chem.200600143. - DOI - PubMed
- Anderson H. L. Inorg. Chem. 1994, 33, 972.10.1021/ic00083a022. - DOI
- Taylor P. N.; Anderson H. L. J. Am. Chem. Soc. 1999, 121, 11538.10.1021/ja992821d. - DOI
- Berl V.; Huc I.; Khoury R. G.; Krische M. J.; Lehn J.-M. Nature 2000, 407, 720.10.1038/35037545. - DOI - PubMed
- Berl V.; Huc I.; Khoury R. G.; Lehn J.-M. Chem. - Eur. J. 2001, 7, 2810.10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5. - DOI - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources