Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera
- PMID: 28473622
- PMCID: PMC5685217
- DOI: 10.3324/haematol.2017.165795
Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera
Abstract
Up to 20% of patients with polycythemia vera have karyotypic abnormalities at the time of the initial diagnosis. However, the cytogenetic abnormalities in polycythemia vera have not been well characterized and their prognostic impact is largely unknown. In this study, we aimed to address these issues using a large cohort of polycythemia vera patients with cytogenetic information available. The study included 422 patients, 271 in polycythemic phase, 112 with post-polycythemic myelofibrosis, 11 in accelerated phase, and 28 in blast phase. Abnormal karyotypes were detected in 139 (33%) patients, ranging from 20% in those in the polycythemic phase to 90% among patients in accelerated/blast phase. Different phases harbored different abnormalities: isolated del(20q), +8 and +9 were the most common abnormalities in the polycythemic phase; del(20q) and +1q were the most common abnormalities in post-polycythemic myelofibrosis; and complex karyotypes were the most common karyotypes in accelerated and blast phases. Patients with an abnormal karyotype showed a higher frequency of disease progression, a shorter transformation-free survival and an inferior overall survival compared with patients with a normal karyotype in the same disease phase. Cytogenetics could be effectively stratified into three risk groups, low- (normal karyotype, sole +8, +9 and other single abnormality), intermediate- (sole del20q, +1q and other two abnormalities), and high-risk (complex karyotype) groups. We conclude that cytogenetic changes in polycythemia vera vary in different phases of disease, and carry different prognostic impacts.
Copyright© 2017 Ferrata Storti Foundation.
Figures
References
-
- Swerdlow SH, Campo C, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Edited by International Agency for Research on Cancer : Lyon, 2008.
-
- Barbui T, Thiele J, Gisslinger H, Finazzi G, Vannucchi AM, Tefferi A. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood Rev. 2016;30(6):453–459. - PubMed
-
- Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–3387. - PubMed
-
- Kennedy JA, Atenafu EG, Messner HA, et al. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood. 2013;121(14):2725–2733. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
