Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets
- PMID: 28475189
- DOI: 10.1039/c7nr00163k
Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets
Abstract
Colloidal cadmium selenide (CdSe) nanoplatelets (NPLs) are a recently developed class of efficient luminescent nanomaterials suitable for optoelectronic device applications. A change in temperature greatly affects their electronic bandstructure and luminescence properties. It is important to understand how and why the characteristics of NPLs are influenced, particularly at elevated temperatures, where both reversible and irreversible quenching processes come into the picture. Here we present a study of the effect of elevated temperatures on the characteristics of colloidal CdSe NPLs. We used an effective-mass envelope function theory based 8-band k·p model and density-matrix theory considering exciton-phonon interaction. We observed the photoluminescence (PL) spectra at various temperatures for their photon emission energy, PL linewidth and intensity by considering the exciton-phonon interaction with both acoustic and optical phonons using Bose-Einstein statistical factors. With a rise in temperature we observed a fall in the transition energy (emission redshift), matrix element, Fermi factor and quasi Fermi separation, with a reduction in intraband state gaps and increased interband coupling. Also, there was a fall in the PL intensity, along with spectral broadening due to an intraband scattering effect. The predicted transition energy values and simulated PL spectra at varying temperatures exhibit appreciable consistency with the experimental results. Our findings have important implications for the application of NPLs in optoelectronic devices, such as NPL lasers and LEDs, operating much above room temperature.
Similar articles
-
Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.Acc Chem Res. 2019 Sep 17;52(9):2684-2693. doi: 10.1021/acs.accounts.9b00252. Epub 2019 Aug 21. Acc Chem Res. 2019. PMID: 31433164
-
Effect of Lateral Size and Surface Passivation on the Near-Band-Edge Excitonic Emission from Quasi-Two-Dimensional CdSe Nanoplatelets.ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41821-41827. doi: 10.1021/acsami.9b16044. Epub 2019 Oct 28. ACS Appl Mater Interfaces. 2019. PMID: 31613084
-
How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets.J Phys Chem Lett. 2021 Nov 25;12(46):11371-11377. doi: 10.1021/acs.jpclett.1c03437. Epub 2021 Nov 18. J Phys Chem Lett. 2021. PMID: 34791883
-
Atomically flat semiconductor nanoplatelets for light-emitting applications.Chem Soc Rev. 2023 Jan 3;52(1):318-360. doi: 10.1039/d2cs00130f. Chem Soc Rev. 2023. PMID: 36533300 Review.
-
Review on Quasi One-Dimensional CdSe Nanomaterials: Synthesis and Application in Photodetectors.Nanomaterials (Basel). 2019 Sep 23;9(10):1359. doi: 10.3390/nano9101359. Nanomaterials (Basel). 2019. PMID: 31547484 Free PMC article. Review.
Cited by
-
All-optical control of exciton flow in a colloidal quantum well complex.Light Sci Appl. 2020 Feb 27;9:27. doi: 10.1038/s41377-020-0262-7. eCollection 2020. Light Sci Appl. 2020. PMID: 32140218 Free PMC article.
-
Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach.Sci Rep. 2024 Dec 28;14(1):30878. doi: 10.1038/s41598-024-81200-9. Sci Rep. 2024. PMID: 39730530 Free PMC article.
-
Temperature-Dependent Photoluminescent Properties of PbSe Nanoplatelets.Nanomaterials (Basel). 2020 Dec 21;10(12):2570. doi: 10.3390/nano10122570. Nanomaterials (Basel). 2020. PMID: 33371429 Free PMC article.
-
Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks.Materials (Basel). 2024 Oct 16;17(20):5056. doi: 10.3390/ma17205056. Materials (Basel). 2024. PMID: 39459761 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources