Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov;255(5 Pt 1):E604-12.
doi: 10.1152/ajpendo.1988.255.5.E604.

Effects of thyroid hormone on Na+-K+ transport in resting and stimulated rat skeletal muscle

Affiliations

Effects of thyroid hormone on Na+-K+ transport in resting and stimulated rat skeletal muscle

M E Everts et al. Am J Physiol. 1988 Nov.

Abstract

The effects of hypothyroidism and 3,5,3'-triiodothyronine (T3) treatment on passive Na+-K+ fluxes and Na+-K+ pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T3 (20 micrograms/100 g body wt), K+ efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na+ influx but no significant increase in [3H]ouabain binding site concentration. After 3 days of T3 treatment, the stimulating effect on K+ efflux and Na+ influx in soleus reached a plateau approximately 80 and 40% above control levels, respectively, whereas the maximum increase in [3H]ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased 86Rb efflux by 30%. The efflux of K+ and the influx of Na+ per contraction (both approximately 7 nmol/g wet wt) as well as the net loss of K+ induced by electrical stimulation were unaffected by T3 treatment. The rise in resting K+ efflux after 12-24 h of T3 treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca2+ concentration may contribute to the early rise in K+ efflux. It is concluded that the early rise in the resting passive leaks of Na+ and K+ induced by T3 is a major driving force for Na+-K+ pump synthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources