Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;23(8):1002-1012.
doi: 10.1089/mdr.2016.0284. Epub 2017 May 5.

Rhodomyrtus tomentosa Leaf Extract Inhibits Methicillin-Resistant Staphylococcus aureus Adhesion, Invasion, and Intracellular Survival in Human HaCaT Keratinocytes

Affiliations

Rhodomyrtus tomentosa Leaf Extract Inhibits Methicillin-Resistant Staphylococcus aureus Adhesion, Invasion, and Intracellular Survival in Human HaCaT Keratinocytes

Sutthirat Srisuwan et al. Microb Drug Resist. 2017 Dec.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) has an ability to invade nonprofessional phagocytic cells, resulting in persistent infections and most likely host cell death. Series of our studies have claimed pronounced antibacterial efficacy of Rhodomyrtus tomentosa leaf extract. This study was to further investigate potency of the extract in intracellular killing of human HaCaT keratinocytes. Pretreatment of MRSA with the extract resulted in a remarkable reduction in the bacterial adhesion to HaCaT keratinocytes, compared with untreated control (p < 0.001). In addition, at least 60% inhibition of the bacterial invasion into HaCaT cells was observed. Intracellular killing assay demonstrated that the extract exhibited strong antibacterial activity against intracellular MRSA at nontoxic concentrations (128 mg/L), which may have resulted from the increase in bactericidal activity under phagolysosomal pH. Transmission electron microscopy displayed the effects of the extract on alterations in the bacterial cell morphology with cell lysis. Fluorescence microscopy revealed that the extract decreased MRSA-induced apoptosis in HaCaT cells. In addition, cytotoxicity of HaCaT cells caused by MRSA supernatant was reduced at least 50% by the extract. The potential activities of R. tomentosa extract may be useful in an alternative treatment of MRSA infections in slight acidic compartments, particularly skin infections.

Keywords: HaCaT keratinocytes; MRSA; Rhodomyrtus tomentosa extract; adhesion; intracellular killing; invasion.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources