Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Nov;255(5 Pt 2):F922-9.
doi: 10.1152/ajprenal.1988.255.5.F922.

pH in principal cells of frog skin (Rana pipiens): effects of amiloride and potential

Affiliations
Comparative Study

pH in principal cells of frog skin (Rana pipiens): effects of amiloride and potential

K Drewnowska et al. Am J Physiol. 1988 Nov.

Abstract

Intracellular pH (pHi) and apical cell membrane potential (Va) were determined in principal cells of frog skin (Rana pipiens) with double-barrel micro-electrodes. In the Northern and Southern varieties, respectively, pHi is 0.38 and 0.26 pH units below bath pH. Amiloride, applied apically, causes reversible intracellular acidification at concentrations of 10(-5) M or higher. Voltage clamp-induced hyperpolarization and depolarization of Va result in intracellular acidification and alkalinization, respectively. This response of pHi is inhibited or abolished when the apical side is treated with 10(-3) M 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Amiloride-induced intracellular acidification is not exclusively due to the hyperpolarization of Va that accompanies amiloride treatment since 1) amiloride causes greater acidification than equivalent voltage clamp-induced hyperpolarization of Va, 2) amiloride-induced acidification persists in DIDS-treated tissues, and 3) there is no correlation between hyperpolarization of Va and intracellular acidification occurring after amiloride. We conclude that pHi is below the extracellular pH. Amiloride causes intracellular acidification that may be in part connected with hyperpolarization of Va. However, a major component of amiloride-induced acidification is due to other factors, possibly inhibition of apical Na+-H+ exchange. The inhibitory effect of apically applied DIDS suggests that the voltage dependent changes in pHi are related to movement of HCO3 (or OH) ions across the apical cell membrane.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

Substances

LinkOut - more resources