The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension
- PMID: 28475897
- PMCID: PMC5422210
- DOI: 10.1016/j.cell.2017.04.013
The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension
Abstract
The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.
Keywords: CTCF; MAU2; NIPBL; SCC2; SCC4; TADs; WAPL; chromatin looping; cohesin; loop extrusion.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Figures















Similar articles
-
ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL.Elife. 2020 Feb 17;9:e52091. doi: 10.7554/eLife.52091. Elife. 2020. PMID: 32065581 Free PMC article.
-
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7. EMBO J. 2017. PMID: 29217591 Free PMC article.
-
Absolute quantification of cohesin, CTCF and their regulators in human cells.Elife. 2019 Jun 17;8:e46269. doi: 10.7554/eLife.46269. Elife. 2019. PMID: 31204999 Free PMC article.
-
CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.Nucleus. 2020 Dec;11(1):132-148. doi: 10.1080/19491034.2020.1782024. Nucleus. 2020. PMID: 32631111 Free PMC article. Review.
-
On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.Curr Opin Cell Biol. 2021 Jun;70:84-90. doi: 10.1016/j.ceb.2020.12.001. Epub 2021 Feb 2. Curr Opin Cell Biol. 2021. PMID: 33545664 Review.
Cited by
-
Rearrangement of T Cell genome architecture regulates GVHD.iScience. 2022 Aug 6;25(9):104846. doi: 10.1016/j.isci.2022.104846. eCollection 2022 Sep 16. iScience. 2022. PMID: 36043052 Free PMC article.
-
Deciphering the multi-scale, quantitative cis-regulatory code.Mol Cell. 2023 Feb 2;83(3):373-392. doi: 10.1016/j.molcel.2022.12.032. Epub 2023 Jan 23. Mol Cell. 2023. PMID: 36693380 Free PMC article. Review.
-
The 3D Genome as a Target for Anticancer Therapy.Trends Mol Med. 2020 Feb;26(2):141-149. doi: 10.1016/j.molmed.2019.09.011. Epub 2019 Oct 31. Trends Mol Med. 2020. PMID: 31679987 Free PMC article. Review.
-
Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2.Nat Commun. 2023 Mar 10;14(1):1326. doi: 10.1038/s41467-023-36900-7. Nat Commun. 2023. PMID: 36898992 Free PMC article.
-
DNA Repair in Space and Time: Safeguarding the Genome with the Cohesin Complex.Genes (Basel). 2022 Jan 22;13(2):198. doi: 10.3390/genes13020198. Genes (Basel). 2022. PMID: 35205243 Free PMC article. Review.
References
-
- Blackwood E.M., Kadonaga J.T. Going the distance: a current view of enhancer action. Science. 1998;281:60–63. - PubMed
-
- Blomen V.A., Májek P., Jae L.T., Bigenzahn J.W., Nieuwenhuis J., Staring J., Sacco R., van Diemen F.R., Olk N., Stukalov A. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350:1092–1096. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials