Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug 9;27(16):6127-35.
doi: 10.1021/bi00416a045.

Domain structure, stability, and interactions of human complement C1s-: characterization of a derivative lacking most of the B chain

Affiliations

Domain structure, stability, and interactions of human complement C1s-: characterization of a derivative lacking most of the B chain

T F Busby et al. Biochemistry. .

Abstract

A better understanding of the structure and function of C1 requires knowledge of the regions (domains) of the subcomponents that are responsible for Ca2+-dependent assembly. Toward this end, C1-s was digested with trypsin in the presence of Ca2+, a treatment that rapidly degraded the B chain, leaving a 56-kDa fragment comprised of a complete A chain disulfide linked to a small (less than 4-kDa) residual piece of the B chain. The purified fragment, referred to as C1-s-A, was shown by fast exclusion chromatography to be similar to C1-s in its ability to (1) reversibly dimerize in the presence of Ca2+, (2) substitute for C1-s in the formation of C1-r2-s2 tetramers, and (3) associate with C1-r and C1q to form macromolecular C1. Although C1-s-A was itself catalytically and hemolytically inactive, it competitively inhibited the expression of the hemolytic activity of C1-s in a reconstitution assay. When heated in the absence of Ca2+, C1-s exhibited a low-temperature transition (LTT) near 31 degrees C and a high-temperature transition (HTT) near 51 degrees C, similar to those previously observed in the homologous protein C1-r [Busby, T. F., & Ingham, K. C. (1987) Biochemistry 26, 5564-5571]. The midpoint of the LTT was shifted to 58 degrees C in 5 mM Ca2+ whereas the HTT was unaffected by Ca2+. C1-s-A exhibited only a LTT whose midpoint and Ca2+ dependence were similar to those of the LTT in C1-s. The HTT, which was accompanied by a loss of esterolytic activity, was reproduced in a plasmin-derived fragment representing the catalytic domain. These results provide strong support for the structural and functional independence of the catalytic and interaction domains of C1-s and strengthen current models regarding the role of these domains in various interactions. They also provide direct proof for the occurrence of Ca2+ binding sites on the A chain and demonstrate that all or most of the sites on C1-s that are responsible for its interaction with C1-r and C1q are located on the A chain.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources