Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 23;33(20):4974-4980.
doi: 10.1021/acs.langmuir.7b00332. Epub 2017 May 12.

How Can Doxorubicin Loading Orchestrate in Vitro Degradation Behaviors of Mesoporous Silica Nanoparticles under a Physiological Condition?

Affiliations

How Can Doxorubicin Loading Orchestrate in Vitro Degradation Behaviors of Mesoporous Silica Nanoparticles under a Physiological Condition?

Eunshil Choi et al. Langmuir. .

Abstract

In the field of drug-delivery research, mesoporous silica nanoparticles (MSNs) have received a great deal of attention because of their capability to load and release drug molecules through the internal mesopores. To maximize the biomedical applicability of MSN-based drug carriers, it is important to ensure their degradability in a physiological environment as well as to obtain MSNs with desirable physicochemical properties. We present in vitro degradability of drug-loaded MSNs (DMSNs) that contain an anticancer drug (doxorubicin) in the pores and are suspended in physiological media (i.e., PBS at 37 °C). To obtain comprehensive understanding of the degradation process of DMSNs, cargo-free MSNs and nonporous solid silica nanoparticles (SSNs) were studied comparatively. Degradation of each particle was studied by using ICP, TEM, and gas sorption measurement and analyzed in terms of structural parameters, external particle surface dissolution, and acidity of the PBS. It is demonstrated for the first time that drug loading into the pores leads to better degradability of MSNs by combining each distinct advantage of bare MSNs and SSNs to make DMSNs simultaneously possess an initial degradation rate as fast as drug-unloaded MSNs and a total degradation quantity as high as SSNs. The presented data not only demonstrate a high biodegradability of MSN-based drug carriers but also provide new insights into their unique in vitro degradation pattern.

PubMed Disclaimer

Publication types

LinkOut - more resources