Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2017 May 8;9(5):469.
doi: 10.3390/nu9050469.

Improved Dietary Guidelines for Vitamin D: Application of Individual Participant Data (IPD)-Level Meta-Regression Analyses

Affiliations
Meta-Analysis

Improved Dietary Guidelines for Vitamin D: Application of Individual Participant Data (IPD)-Level Meta-Regression Analyses

Kevin D Cashman et al. Nutrients. .

Abstract

Dietary Reference Values (DRVs) for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs) are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD)-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years) of the vitamin D intake-serum 25-hydroxyvitamin D (25(OH)D) dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OH)D concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years) from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OH)D >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OH)D to vitamin D intake.

Keywords: DRV; EAR; Individual Participant Data-level meta-regression analyses; RDA; vitamin D recommendations.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflict of interest in this work. While Kevin D. Cashman and Susan A. Lanham-New were members of the SACN Vitamin D Working Group, and Christel Lamberg-Allardt was a member of the EFSA Vitamin D DRV panel; the findings and conclusions in this report are those of the authors and do not necessarily represent the views of these agencies. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
The relation between serum 25-hydroxyvitamin D (25(OH)D) concentrations (in late winter) and total vitamin D intake (i.e., from diet plus supplemental) in healthy persons aged 4–86 years living at northerly latitudes (between 51° N and 60° N) based on individual participant data (IPD) (n = 882 individuals) (A) and aggregate RCT group mean data (n = 23 arms) (B) from the same RCTs. The solid and dashed lines through the IPD data points (black circles) (A) correspond to the fitted regression lines based on the two-step (adjusted for age and baseline 25(OH)D) and one-step IPD analyses, respectively, and the corresponding 95% prediction bands are shown in grey (the lightest being the band for the one-step IPD analysis) (A). The fitted regression lines for the unadjusted and adjusted (age and baseline 25(OH)D) standard meta-regression based on aggregate data from same RCTs (black triangles) (B) are shown as dotted and dot-dashed lines with corresponding 95% confidence bands shown in grey (the lightest being the band for the unadjusted analysis).

References

    1. Institute of Medicine Food and Nutrition Board . Dietary Reference Intakes for Calcium and Vitamin D. National Academy Press; Washington, DC, USA: 2011.
    1. Munns C.F., Shaw N., Kiely M., Specker B.L., Thacher T.D., Ozono K., Michigami T., Tiosano D., Mughal M.Z., Mäkitie O., et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. MeTable. 2016;101:394–415. doi: 10.1210/jc.2015-2175. - DOI - PMC - PubMed
    1. Cranney A., Horsley T., O’Donnell S., Weiler H., Puil L., Ooi D., Atkinson S., Ward L., Moher D., Hanley D., et al. Effectiveness and Safety of Vitamin D in Relation to Bone Health. Agency for Healthcare Research and Quality; Rockville, MD, USA: 2007. Evidence Report/Technology Assessment No. 158. - PMC - PubMed
    1. Cashman K.D., Dowling K.G., Škrabáková Z., Gonzalez-Gross M., Valtueña J., De Henauw S., Moreno L., Damsgaard C.T., Michaelsen K.F., Mølgaard C., et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016;103:1033–1044. - PMC - PubMed
    1. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M., Endocrine Society Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. MeTable. 2011;96:1911–1930. - PubMed

Publication types

MeSH terms

LinkOut - more resources