Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Aug;31(8):1661-1670.
doi: 10.1038/leu.2017.139. Epub 2017 May 9.

The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders

Affiliations
Review

The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders

N Maslah et al. Leukemia. 2017 Aug.

Abstract

Malignant hematological diseases are mainly because of the occurrence of molecular abnormalities leading to the deregulation of signaling pathways essential for precise cell behavior. High-resolution genome analysis using microarray and large-scale sequencing have helped identify several important acquired gene mutations that are responsible for such signaling deregulations across different hematological malignancies. In particular, the genetic landscape of classical myeloproliferative neoplasms (MPNs) has been in large part completed with the identification of driver mutations (targeting the cytokine receptor/Janus-activated kinase 2 (JAK2) pathway) that determine MPN phenotype, as well as additional mutations mainly affecting the regulation of gene expression (epigenetics or splicing regulators) and signaling. At present, most efforts concentrate in understanding how all these genetic alterations intertwine together to influence disease evolution and/or dictate clinical phenotype in order to use them to personalize diagnostic and clinical care. However, it is now evident that factors other than somatic mutations also play an important role in MPN disease initiation and progression, among which germline predisposition (single-nucleotide polymorphisms and haplotypes) may strongly influence the occurrence of MPNs. In this context, the LNK inhibitory adaptor protein encoded by the LNK/SH2B adaptor protein 3 (SH2B3) gene is the target of several genetic variations, acquired or inherited in MPNs, lymphoid leukemia and nonmalignant hematological diseases, underlying its importance in these pathological processes. As LNK adaptor is a key regulator of normal hematopoiesis, understanding the consequences of LNK variants on its protein functions and on driver or other mutations could be helpful to correlate genotype and phenotype of patients and to develop therapeutic strategies to target this molecule. In this review we summarize the current knowledge of LNK function in normal hematopoiesis, the different SH2B3 mutations reported to date and discuss how these genetic variations may influence the development of hematological malignancies.

PubMed Disclaimer

References

    1. Blood. 2010 Aug 12;116(6):988-92 - PubMed
    1. J Clin Invest. 2008 Aug;118(8):2832-44 - PubMed
    1. Br J Haematol. 2013 Jun;161(6):811-20 - PubMed
    1. N Engl J Med. 2013 Dec 19;369(25):2379-90 - PubMed
    1. Circ Cardiovasc Genet. 2015 Apr;8(2):294-304 - PubMed

Substances