Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Apr 24:8:469.
doi: 10.3389/fimmu.2017.00469. eCollection 2017.

Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

Affiliations
Review

Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

Amy Hughes et al. Front Immunol. .

Abstract

Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating TFR success. However, a major goal remains in CML to identify the most effective pathways to target to maximize an advantageous immune response and promote TFR success.

Keywords: chronic myeloid leukemia; deep molecular response; immune surveillance; immunology; treatment-free remission.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Immune effector recovery in CML patients achieving deep molecular response on TKI therapy. Diagnosis CP CML; suppression of the immune system in CP CML patients at diagnosis is mediated in part by hematopoietic stem cells, which acquire a proliferative/survival advantage and lose the ability to undergo apoptosis. Release of tumor-derived cytokines/chemokines drives the expansion of immune suppressor MDSC and Treg, facilitating downregulation of antitumor effector immunity. PD-L1 is upregulated on CML cells, where it interacts with the coinhibitory receptor PD-1, and contributes to protection of the malignant cells from immune destruction. MDSC originate from the malignant BCR-ABL1 clone and mediate their suppressive activity via a number of mechanisms, including increased production of reactive oxygen and nitrogen species (NO, ROS), arginase-1, and TGF-β1. MDSC can induce Treg expansion, and Treg also express PD-1 to promote enhanced suppressor function. Post-TKI treatment; TKI exert immunomodulatory effects, particularly against key suppressor MDSC and Treg populations, conferring immune system re-activation and restoring effector-mediated immune surveillance. More specifically, TKI treatment leads to restoration of NK cell receptor repertoire and enhanced NK cell function, restoration of LAA-CTL responses, including downregulation of PD-1 to normal levels, and increased DC number and antigen-presenting cell function. CML, chronic myeloid leukemia; TKI, tyrosine kinase inhibitor; CP, chronic phase; MDSCs, myeloid-derived suppressor cells; Treg, regulatory T cells; PD-L1, programmed death ligand-1; PD-1, programmed death-1; NO, nitric oxide; ROS, reactive oxygen species; TGF-β1, transforming growth factor-β1; NK, natural killer; LAA, leukemia-associated antigen; CTL, cytotoxic T lymphocyte; DC, dendritic cell.

References

    1. Bennour A, Saad A, Sennana H. Chronic myeloid leukemia: relevance of cytogenetic and molecular assays. Crit Rev Oncol Hematol (2016) 97:263–74.10.1016/j.critrevonc.2015.08.020 - DOI - PubMed
    1. Vonka V, Petrackova M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol (2015) 11(4):511–22.10.1586/1744666X.2015.1019474 - DOI - PubMed
    1. Cortes J, Kantarjian H. How I treat newly diagnosed chronic phase CML. Blood (2012) 120(7):1390–7.10.1182/blood-2012-03-378919 - DOI - PMC - PubMed
    1. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood (2013) 122(6):872–84.10.1182/blood-2013-05-501569 - DOI - PMC - PubMed
    1. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood (2013) 122(4):515–22.10.1182/blood-2013-02-483750 - DOI - PubMed