Inactivation of yeast hexokinase by 2-aminothiophenol. Evidence for a 'half-of-the-sites' mechanism
- PMID: 2848499
- PMCID: PMC1135156
- DOI: 10.1042/bj2540819
Inactivation of yeast hexokinase by 2-aminothiophenol. Evidence for a 'half-of-the-sites' mechanism
Abstract
Yeast hexokinase is a homodimer consisting of two identical subunits. Yeast hexokinase was inactivated by 2-aminothiophenol at 25 degrees C (pH 9.1). The reaction followed pseudo-first-order kinetics until about 70% of the phosphotransferase activity was lost. About 0.65 mol of 2-aminothiophenol/mol of hexokinase was found to be bound after the 70% loss of the enzyme activity. Completely inactivated hexokinase showed a stoichiometry of about 1 mol of 2-aminothiophenol bound/mol of the enzyme. The evidence obtained from kinetic experiments, stoichiometry of the inactivation reaction and fluorescence emission measurements suggested site-site interaction (weak negative co-operativity) during the inactivation reaction. The approximate rate constants for the reversible binding of 2-aminothiophenol to the first subunit (KI) and for the rate of covalent bond formation with only one site occupied (k3) were 150 microM and 0.046 min-1 respectively. The inactivation reaction was pH-dependent. Dithiothreitol, 2-mercaptoethanol and cysteine restored the phosphotransferase activity of the hexokinase after inactivation by 2-aminothiophenol. Sugar substrates protected the enzyme from inactivation more than did the nucleotides. Thus it is concluded that the inactivation of the hexokinase by 2-aminothiophenol was a consequence of a covalent disulphide bond formation between the aminothiol and thiol function at or near the active site of the enzyme. Hexokinase that had been completely inactivated by 2-aminothiophenol reacted with o-phthalaldehyde. Fluorescence emission intensity of the incubation mixture containing 2-aminothiophenol-modified hexokinase and o-phthalaldehyde was one-half of that obtained from an incubation mixture containing hexokinase and o-phthalaldehyde under similar experimental conditions. The intensity and position of the fluorescence emission maximum of the 2-aminothiophenol-modified hexokinase were different from those of the native enzyme, indicating conformational change following modification. Whereas aliphatic aminothiols were completely ineffective, aromatic aminothiols were good inhibitors of the hexokinase. Cyclohexyl mercaptan weakly inhibited the enzyme. Inhibition of the hexokinase by heteroaromatic thiols was dependent on the nature of the heterocyclic ring and position of the thiol-thione equilibrium. The inhibitory function of a thiol is associated with the following structural characteristics: (a) the presence of an aromatic ring, (b) the presence of a free thiol function and (c) the presence of a free amino function in the close proximity of the thiol function.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Inactivation of yeast hexokinase by Cibacron Blue 3G-A: spectral, kinetic and structural investigations.Biochem J. 1994 May 15;300 ( Pt 1)(Pt 1):91-7. doi: 10.1042/bj3000091. Biochem J. 1994. PMID: 8198558 Free PMC article.
-
Inactivation of yeast hexokinase by o-phthalaldehyde: evidence for the presence of a cysteine and a lysine at or near the active site.Biochim Biophys Acta. 1988 Nov 2;957(1):34-46. doi: 10.1016/0167-4838(88)90154-9. Biochim Biophys Acta. 1988. PMID: 3140897
-
Inactivation of yeast glutathione reductase by O-phthalaldehyde.J Enzyme Inhib. 1996 Oct;11(2):141-9. doi: 10.3109/14756369609036541. J Enzyme Inhib. 1996. PMID: 9204403
-
Inactivation of yeast hexokinase by Cibacron brilliant red 3B-A.Arch Biochem Biophys. 1993 Jun;303(2):288-95. doi: 10.1006/abbi.1993.1285. Arch Biochem Biophys. 1993. PMID: 8512315
-
Adenosine cyclic 3',5'-monophosphate dependent protein kinase: fluorescent affinity labeling of the catalytic subunit from bovine skeletal muscle with o-phthalaldehyde.Biochemistry. 1985 Nov 5;24(23):6499-508. doi: 10.1021/bi00344a029. Biochemistry. 1985. PMID: 3936543
Cited by
-
Inactivation of yeast hexokinase by Cibacron Blue 3G-A: spectral, kinetic and structural investigations.Biochem J. 1994 May 15;300 ( Pt 1)(Pt 1):91-7. doi: 10.1042/bj3000091. Biochem J. 1994. PMID: 8198558 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous