Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May:53:66-75.
doi: 10.1016/j.placenta.2017.03.017. Epub 2017 Mar 30.

Redefining 3Dimensional placental membrane microarchitecture using multiphoton microscopy and optical clearing

Affiliations

Redefining 3Dimensional placental membrane microarchitecture using multiphoton microscopy and optical clearing

Lauren Richardson et al. Placenta. 2017 May.

Abstract

Introduction: Remodeling of human placental membranes (amniochorionic or fetalmembrane) throughout gestation, a necessity to accommodate increasing uterine volume, involves continuous alterations (replacement of cells and remodeling of extracellular matrix). Methodologic limitations have obscured microscopic determination of cellular and layer-level alterations. This study used a combination of advanced imaging by multiphoton autofluorescence microscopy (MPAM) and second harmonic generation (SHG) microscopy along with tissue optical clearing to characterize the 3Dimensional multilayer organization of placental membranes.

Methods: Placental membranes biopsies (6 mm) collected from term, not-in-labor cesarean deliveries (n = 7) were fixed in 10% formalin (native) or treated with 2,2'-thiodiethanol to render them transparent for deeper imaging. Native and cleared tissues were imaged using MPAM (cellular autofluorescence) and SHG (fibrillar collagen). Depth z-stacks captured the amnion epithelium, underlying matrix layers, and in the cleared biopsies, the decidua layer.

Results: MPAM and SHG revealed fetal membrane epithelial topography and collagen organization in multiple matrix layers. Term amnion layers showed epithelial shedding and gaps. Optical clearing provided full-depth imaging with improved visualization of collagen structure, mesenchymal cells in extracellular matrix layers, and decidua morphology. Layer thicknesses measured by imaging corroborated with histology. Mosaic tiling of MPAM/SHG image stacks allowed large area visualization of entire biopsies.

Conclusion: MPAM-SHG microscopy allowed for study of this multi-layered tissue and revealed shedding, gap formation, and other structural changes. This approach could be used to study structural changes associated with membranes as well as other uterine tissues to better understand events in normal and abnormal parturition.

Keywords: Amniochorion; Epithelial shedding; Membrane rupture; Multiphoton microscopy; Nonlinear optical microscopy; Optical clearing; Placenta; Pregnancy and parturition; Second harmonic generation microscopy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources