Bioinformatics in translational drug discovery
- PMID: 28487472
- PMCID: PMC6448364
- DOI: 10.1042/BSR20160180
Bioinformatics in translational drug discovery
Abstract
Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications.
Keywords: computational biochemistry; drug discovery and design; genomics.
© 2017 The Author(s).
Conflict of interest statement
The authors declare that there are no competing interests associated with the manuscript.
Figures



Similar articles
-
The role of translational bioinformatics in drug discovery.Drug Discov Today. 2011 May;16(9-10):426-34. doi: 10.1016/j.drudis.2011.03.002. Epub 2011 Mar 21. Drug Discov Today. 2011. PMID: 21402166 Review.
-
Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?Curr Top Med Chem. 2016;16(19):2069-77. doi: 10.2174/1568026616666160216153249. Curr Top Med Chem. 2016. PMID: 26881717 Review.
-
Leveraging Big Data to Transform Drug Discovery.Methods Mol Biol. 2019;1939:91-118. doi: 10.1007/978-1-4939-9089-4_6. Methods Mol Biol. 2019. PMID: 30848458 Free PMC article.
-
Computational drug repositioning for cancer therapeutics.Curr Top Med Chem. 2015;15(8):767-75. doi: 10.2174/1568026615666150302105831. Curr Top Med Chem. 2015. PMID: 25732789
-
Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.OMICS. 2019 Nov;23(11):539-548. doi: 10.1089/omi.2019.0151. Epub 2019 Oct 25. OMICS. 2019. PMID: 31651216
Cited by
-
Identification of hub genes and their correlation with immune infiltrating cells in membranous nephropathy: an integrated bioinformatics analysis.Eur J Med Res. 2023 Nov 16;28(1):525. doi: 10.1186/s40001-023-01311-3. Eur J Med Res. 2023. PMID: 37974210 Free PMC article.
-
OTTM: an automated classification tool for translational drug discovery from omics data.Brief Bioinform. 2023 Sep 20;24(5):bbad301. doi: 10.1093/bib/bbad301. Brief Bioinform. 2023. PMID: 37594310 Free PMC article.
-
Bioinformatics-based discovery of biomarkers and immunoinflammatory targets in children with cerebral palsy: An observational study.Medicine (Baltimore). 2024 Apr 19;103(16):e37828. doi: 10.1097/MD.0000000000037828. Medicine (Baltimore). 2024. PMID: 38640267 Free PMC article.
-
Introducing JMIR Bioinformatics and Biotechnology: A Platform for Interdisciplinary Collaboration and Cutting-Edge Research.JMIR Bioinform Biotechnol. 2023 Jun 12;4:e48631. doi: 10.2196/48631. JMIR Bioinform Biotechnol. 2023. PMID: 38935954 Free PMC article.
-
Computational Approaches: A New Frontier in Cancer Research.Comb Chem High Throughput Screen. 2024;27(13):1861-1876. doi: 10.2174/0113862073265604231106112203. Comb Chem High Throughput Screen. 2024. PMID: 38031782 Review.
References
-
- Paul S.M., Mytelka D.S., Dunwiddie C.T., Persinger C.C., Munos B.H., Lindborg S.R. et al. (2010) How to improve R &D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 - PubMed
-
- Kola I. and Landis J. (2004) Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 - PubMed
-
- Loging W., Harland L. and William-Jones B. (2007) High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov. 6, 220–230 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources