Automatic classification of lung nodules on MDCT images with the temporal subtraction technique
- PMID: 28488239
- DOI: 10.1007/s11548-017-1598-1
Automatic classification of lung nodules on MDCT images with the temporal subtraction technique
Abstract
Purpose: A temporal subtraction (TS) image is obtained by subtracting a previous image, which is warped to match the structures of the previous image and the related current image. The TS technique removes normal structures and enhances interval changes such as new lesions and substitutes in existing abnormalities from a medical image. However, many artifacts remaining on the TS image can be detected as false positives.
Method: This paper presents a novel automatic segmentation of lung nodules using the Watershed method, multiscale gradient vector flow snakes and a detection method using the extracted features and classifiers for small lung nodules (20 mm or less).
Result: Using the proposed method, we conduct an experiment on 30 thoracic multiple-detector computed tomography cases including 31 small lung nodules.
Conclusion: The experimental results indicate the efficiency of our segmentation method.
Keywords: CAD; Lung nodule; MDCT; Machine learning; Temporal subtraction.
Similar articles
-
Development of a voxel-matching technique for substantial reduction of subtraction artifacts in temporal subtraction images obtained from thoracic MDCT.J Digit Imaging. 2010 Feb;23(1):31-8. doi: 10.1007/s10278-008-9169-1. Epub 2008 Nov 20. J Digit Imaging. 2010. PMID: 19020936 Free PMC article.
-
[Development of temporal subtraction method for chest radiographs by using pixel matching technique].Nihon Hoshasen Gijutsu Gakkai Zasshi. 2013 Aug;69(8):855-63. doi: 10.6009/jjrt.2013_jsrt_69.8.855. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2013. PMID: 23965786 Japanese.
-
Pulmonary nodule classification with deep residual networks.Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1799-1808. doi: 10.1007/s11548-017-1605-6. Epub 2017 May 13. Int J Comput Assist Radiol Surg. 2017. PMID: 28501942
-
Local contralateral subtraction based on bilateral symmetry of lung for reduction of false positives in computerized detection of pulmonary nodules.IEEE Trans Biomed Eng. 2004 May;51(5):778-89. doi: 10.1109/TBME.2004.824136. IEEE Trans Biomed Eng. 2004. PMID: 15132504
-
Subsolid pulmonary nodule management and lung adenocarcinoma classification: state of the art and future trends.Semin Roentgenol. 2013 Oct;48(4):295-307. doi: 10.1053/j.ro.2013.03.013. Semin Roentgenol. 2013. PMID: 24034262 Review. No abstract available.
Cited by
-
Lung nodule classification using deep Local-Global networks.Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1815-1819. doi: 10.1007/s11548-019-01981-7. Epub 2019 Apr 24. Int J Comput Assist Radiol Surg. 2019. PMID: 31020576
-
Comparison of Maximum Intensity Projection and Volume Rendering in Detecting Pulmonary Nodules on Multidetector Computed Tomography.Cureus. 2021 Mar 21;13(3):e14025. doi: 10.7759/cureus.14025. Cureus. 2021. PMID: 33898115 Free PMC article.
-
CT temporal subtraction: techniques and clinical applications.Quant Imaging Med Surg. 2021 Jun;11(6):2214-2223. doi: 10.21037/qims-20-1367. Quant Imaging Med Surg. 2021. PMID: 34079696 Free PMC article. No abstract available.
-
Analysis of the Cluster Prominence Feature for Detecting Calcifications in Mammograms.J Healthc Eng. 2018 Dec 30;2018:2849567. doi: 10.1155/2018/2849567. eCollection 2018. J Healthc Eng. 2018. PMID: 30687489 Free PMC article.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous