Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Dec;255(6 Pt 1):C844-56.
doi: 10.1152/ajpcell.1988.255.6.C844.

pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-

Affiliations

pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-

G Boyarsky et al. Am J Physiol. 1988 Dec.

Abstract

We have developed a technique to measure the fluorescence of a pH-sensitive dye (2,7-biscarboxyethyl-5(6)-carboxyfluorescein) in single glomerular mesangial cells in culture. The intracellular fluorescence excitation ratio of the dye was calibrated using the nigericin-high-K+ approach. In the absence of CO2-HCO3-, mesangial cells that are acid loaded by an NH+4 prepulse exhibit a spontaneous intracellular pH (pHi) recovery that is blocked either by ethylisopropylamiloride (EIPA) or removal of external Na+. This pHi recovery most probably reflects the activity of a Na+-H+ exchanger. When the cells are switched from a N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution to one containing CO2-HCO3-, there is an abrupt acidification due to CO2 entry, which is followed by a spontaneous recovery of pHi to a steady-state value higher than that prevailing in HEPES. Both the rate of recovery and the higher steady-state pHi imply that the application of CO2-HCO3- introduces an increase in net acid extrusion from the cell. One third of total net acid extrusion in CO2-HCO3- is EIPA sensitive and most likely is mediated by the Na+-H+ exchanger. The remaining two thirds of acid extrusion could be caused by a decrease in the background acid-loading rate and/or the introduction of a new, HCO3- -dependent acid-extrusion mechanism. The HCO3- -induced alkalinization cannot be accounted for by a HCO3- -induced reduction in the acid-loading rate. The latter can be estimated by applying EIPA in the absence of HCO3- and observing the rate of pHi decline. We found that this acid-loading rate is only about one fifth as great as the total net acid extrusion rate in the presence of HCO3-. Indeed, two thirds of net acid extrusion in HCO3- is blocked by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), an inhibitor of HCO3- -dependent transport. Furthermore, the effects of EIPA and SITS were additive. Thus, in the presence of CO2-HCO3-, a SITS-sensitive-HCO3- -dependent transporter is the dominant mechanism of acid extrusion. This mechanism also accounts for the increase in steady-state pHi on addition of CO2-HCO3-.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources