Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis
- PMID: 28493897
- PMCID: PMC5426589
- DOI: 10.1371/journal.pone.0176396
Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis
Abstract
The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.
Conflict of interest statement
Figures







Similar articles
-
The BvgAS Regulon of Bordetella pertussis.mBio. 2017 Oct 10;8(5):e01526-17. doi: 10.1128/mBio.01526-17. mBio. 2017. PMID: 29018122 Free PMC article.
-
Identification of BvgA-Dependent and BvgA-Independent Small RNAs (sRNAs) in Bordetella pertussis Using the Prokaryotic sRNA Prediction Toolkit ANNOgesic.Microbiol Spectr. 2021 Oct 31;9(2):e0004421. doi: 10.1128/Spectrum.00044-21. Epub 2021 Sep 22. Microbiol Spectr. 2021. PMID: 34550019 Free PMC article.
-
Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis.Infect Immun. 1998 Sep;66(9):4367-73. doi: 10.1128/IAI.66.9.4367-4373.1998. Infect Immun. 1998. PMID: 9712789 Free PMC article.
-
Signal transduction and virulence regulation in Bordetella pertussis.Microbiologia. 1996 Jun;12(2):185-96. Microbiologia. 1996. PMID: 8767703 Review.
-
Regulatory factors of Bordetella pertussis affecting virulence gene expression.J Mol Microbiol Biotechnol. 2002 May;4(3):197-203. J Mol Microbiol Biotechnol. 2002. PMID: 11931547 Review.
Cited by
-
Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon.Commun Biol. 2021 Jan 8;4(1):46. doi: 10.1038/s42003-020-01580-2. Commun Biol. 2021. PMID: 33420409 Free PMC article.
-
Combined RNAseq and ChIPseq Analyses of the BvgA Virulence Regulator of Bordetella pertussis.mSystems. 2020 May 19;5(3):e00208-20. doi: 10.1128/mSystems.00208-20. mSystems. 2020. PMID: 32430408 Free PMC article.
-
Combined transcriptomic and ChIPseq analyses of the Bordetella pertussis RisA regulon.mSystems. 2024 Apr 16;9(4):e0095123. doi: 10.1128/msystems.00951-23. Epub 2024 Mar 12. mSystems. 2024. PMID: 38470037 Free PMC article.
References
-
- Melvin JA, Scheller EV, Miller JF, Cotter PA. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol. 2014; 12: 274–288. doi: 10.1038/nrmicro3235 - DOI - PMC - PubMed
-
- Libster Edwards CA. Re-emergence of pertussis: what are the solutions? Expert Rev Vaccines. 2012; 11: 1331–1346. doi: 10.1586/erv.12.118 - DOI - PubMed
-
- Rohani P, Zhong X, King AA. Contact network structure explains the changing epidemiology of pertussis. Science. 2010; 330: 982–985. doi: 10.1126/science.1194134 - DOI - PubMed
-
- Lavine JS, King AA, Bjornstad ON. Natural immune boosting in pertussis dynamics and the potential for long-term vaccine failure. Proc Natl Acad Sci U S A. 2011; 108: 7259–7264. doi: 10.1073/pnas.1014394108 - DOI - PMC - PubMed
-
- Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003; 11: 367–373. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical