Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
- PMID: 28498102
- PMCID: PMC5462543
- DOI: 10.7554/eLife.23717
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history.
Keywords: HPPG; algae; cell biology; chromalveolate; diatom; evolutionary biology; genomics; none; plastid protein import; shopping bag model.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
















































Similar articles
-
Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?Sci Rep. 2015 May 28;5:10134. doi: 10.1038/srep10134. Sci Rep. 2015. PMID: 26017773 Free PMC article.
-
Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).Genome Biol Evol. 2014 Mar;6(3):666-84. doi: 10.1093/gbe/evu043. Genome Biol Evol. 2014. PMID: 24572015 Free PMC article.
-
Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):109-33; discussion 133-4. doi: 10.1098/rstb.2002.1194. Philos Trans R Soc Lond B Biol Sci. 2003. PMID: 12594921 Free PMC article.
-
Chromalveolates and the evolution of plastids by secondary endosymbiosis.J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8. doi: 10.1111/j.1550-7408.2008.00371.x. J Eukaryot Microbiol. 2009. PMID: 19335769 Review.
-
Are Thraustochytrids algae?Fungal Biol. 2017 Oct;121(10):835-840. doi: 10.1016/j.funbio.2017.07.006. Epub 2017 Aug 3. Fungal Biol. 2017. PMID: 28889907 Review.
Cited by
-
A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis.Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17934-17942. doi: 10.1073/pnas.1910121116. Epub 2019 Aug 19. Proc Natl Acad Sci U S A. 2019. PMID: 31427512 Free PMC article.
-
PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum.Front Plant Sci. 2020 Oct 16;11:590949. doi: 10.3389/fpls.2020.590949. eCollection 2020. Front Plant Sci. 2020. PMID: 33178253 Free PMC article.
-
Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros.PLoS Biol. 2022 Nov 28;20(11):e3001893. doi: 10.1371/journal.pbio.3001893. eCollection 2022 Nov. PLoS Biol. 2022. PMID: 36441816 Free PMC article.
-
RSH enzyme diversity for (p)ppGpp metabolism in Phaeodactylum tricornutum and other diatoms.Sci Rep. 2019 Nov 27;9(1):17682. doi: 10.1038/s41598-019-54207-w. Sci Rep. 2019. PMID: 31776430 Free PMC article.
-
Independent Evolution of the MYB Family in Brown Algae.Front Genet. 2022 Feb 4;12:811993. doi: 10.3389/fgene.2021.811993. eCollection 2021. Front Genet. 2022. PMID: 35186015 Free PMC article.
References
-
- Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research. 2016;44:W3–W10. doi: 10.1093/nar/gkw343. - DOI - PMC - PubMed
-
- Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. doi: 10.1126/science.1101156. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources