Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 27;8(26):42700-42711.
doi: 10.18632/oncotarget.17446.

The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells

Affiliations

The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells

Yanxia Zhu et al. Oncotarget. .

Abstract

Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.

Keywords: differentiation; disc degenerative disease; induced pluripotent stem cell; nucleus pulposus; reprogram.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1. Overview of the NP-iPSC generation protocol and immunostaining of specific markers
(A) NPCs transduced with SeV expressing human OCT3/4, SOX2, KLF4 and c-MYC. NPC derived iPS colonies emerge at 14–28 days after NP cell transduction. (B) Staining of Alkaline phosphatase (AP) and pluripotency markers (NANOG, OCT3/4, SOX2, TRA-1–60, TRA-1–81 and SSEA-4) in induced cell colonies
Figure 2
Figure 2. Characterization of iPS colonies generated from NPCs
(A) Real time polymerase chain reaction (RT-PCR) analysis of endogenous and total genes in induced colonies. 1# and 2# represent NPC-derived iPSCs P4 and P16, 3# represent H9 P38. (B) DNA methylation analysis in the promoters of Oct4 and Nanog by bisulfite sequencing. Human NP and H9 cells were used as controls. (C) Karyotyping analysis of a representative colony. (D) Hematoxylin and eosin (HE) staining of teratomas derived from NP-derived iPSCs.
Figure 3
Figure 3. Differentiation analysis of iPSCs
Brightfield image showing the morphology of iPSCs 3 weeks post differentiation (magnification 100×, bar = 100 μm). Toluidine blue staining of glycosaminoglycans in representative iPS cell clusters (magnification 200×, bar = 50 μm). Immunostaining of iPS cell cultures for the presence of collagen II, aggrecan, and CD24. NP cells were used as positive control (magnification 100×, bar = 100 μm). Regions of positive staining are shown as brown (magnification 200×, bar = 50 μm). F-iPS: fibroblast derived iPS cells; NP-iPS: NP cells derived iPS cells; NPC: NP cells; Induction: iPSCs induced with NP differentiation media; Non-induction: iPSCs cultured without NP differentiation media.
Figure 4
Figure 4. Quantitative analysis of NP specific proteins and genes
Protein expressions of collagen II, aggrecan and CD24were analyzed by western blotting. Quantitative analysis was did for collagen II, aggrecan, CD24, KRT18, Basp1 and CD54 gene expression in micromass-cultured iPSCs after 3 weeks differentiation, * compare with undifferentiation group p < 0.01, # compare with NP cells p < 0.05. F-iPS-C: fibroblast derived iPS cells without differentiation; F-iPS-D: fibroblast derived iPS cells cultured with NP differentiation media; NP-iPS-C: NP cells derived iPS cells without differentiation; NP-iPS-D: NP cells derived iPS cells cultured with NP differentiation media.
Figure 5
Figure 5. Differentiation analysis of iPSCs in hydrogel
Toluidine blue staining of glycosaminoglycans in hydrogel and culture plate (magnification 100×, bar = 100 μm). Quantitative analysis was performed for collagen II, aggrecan, CD24, KRT18, Basp1 and CD54 gene expression in in hydrogel and culture plate, * compared with cells in culture plate. 2D: iPSCs differentiated in culture plate, 3D: iPSCs differentiated in hydrogel.
Figure 6
Figure 6. Immunofluorescence analysis of iPSC differentiation in hydrogel
Immunofluorescence staining of iPSCs for the presence of collagen II and CD24. Positive staining is shown by red fluorescence, blue fluorescence is for the nucleus (magnification 200×, bar = 50 μm). 2D: iPSCs differentiated in culture plate, 3D: iPSCs differentiated in hydrogel.

Similar articles

Cited by

References

    1. Zhang Y, Xiong C, Chan C, Sakai D, Chan D. Changes in Nucleus Pulposus Cell Pools in “Healer” Mice for the Repair of Intervertebral Disc Degeneration. Global Spine J. 2015:05–P004.
    1. Kim DH, Martin JT, Elliott DM, Smith LJ, Mauck RL. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomaterialia. 2015;12:21–29. - PMC - PubMed
    1. Oehme D, Goldschlager T, Ghosh P, Rosenfeld JV, Jenkin G. Cell-Based Therapies Used to Treat Lumbar Degenerative Disc Disease: A Systematic Review of Animal Studies and Human Clinical Trials. Stem Cell International. 2015;2015:1–16. - PMC - PubMed
    1. Lv F, Leung V, Cheung K. Cell-based Therapies for Degenerative Disc Diseases. Operative Techniques in Orthopaedics. 2016
    1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. - PubMed

MeSH terms