Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 12;12(5):e0177473.
doi: 10.1371/journal.pone.0177473. eCollection 2017.

KDM1A/LSD1 regulates the differentiation and maintenance of spermatogonia in mice

Affiliations

KDM1A/LSD1 regulates the differentiation and maintenance of spermatogonia in mice

Dexter A Myrick et al. PLoS One. .

Abstract

The proper regulation of spermatogenesis is crucial to ensure the continued production of sperm and fertility. Here, we investigated the function of the H3K4me2 demethylase KDM1A/LSD1 during spermatogenesis in developing and adult mice. Conditional deletion of Kdm1a in the testis just prior to birth leads to fewer spermatogonia and germ cell loss before 3 weeks of age. These results demonstrate that KDM1A is required for spermatogonial differentiation, as well as germ cell survival, in the developing testis. In addition, inducible deletion of Kdm1a in the adult testis results in the abnormal accumulation of meiotic spermatocytes, as well as apoptosis and progressive germ cell loss. These results demonstrate that KDM1A is also required during adult spermatogenesis. Furthermore, without KDM1A, the stem cell factor OCT4 is ectopically maintained in differentiating germ cells. This requirement for KDM1A is similar to what has been observed in other stem cell populations, suggesting a common function. Taken together, we propose that KDM1A is a key regulator of spermatogenesis and germ cell maintenance in the mouse.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Expression of KDM1A in the testis.
KDM1A (A,C,E,G), PLZF (I) and combined DAPI (red) and KDM1A (green) (B,D,F,H) immunofluorescence from wild-type testes. (J) Combined PLZF (green) and KDM1A (red) IF. Asterisk in magnified inset (H) indicates mature spermatozoa. White arrowheads in (I,J) indicate spermatogonia marked by PLZF. The expression of KDM1A in these same PLZF+ spermatogonia is shown in G,H (white arrowheads). In all other panels, spermatogenic cell types are labeled as described in legend (dpp = days post partum). Cell types were identified based on morphology and location within the testicular cord or seminiferous tubule. Scale bars, 25 μm.
Fig 2
Fig 2. Spermatogonia differentiation and maintenance defect in Kdm1aVasa mutants.
(A) Representative images of control and Kdm1aVasa mutant adult testes. Histology from control (B) and Kdm1aVasa (C) adult testes. Arrowheads indicate Sertoli cells (C). SOX9 immunohistochemistry (brown) counterstained with hematoxylin (blue) from control (D) and Kdm1aVasa (E) testes at 21days post partum (dpp). Histology from control (F,H,J,L) and Kdm1aVasa testes (G,I,K,M) at 1dpp (F,G), 6dpp (H,I), 8dpp (J,K) and 10dpp (L,M). Arrowheads indicate spermatogonia (F-L), and asterisk indicates spermatocytes (L) and abnormal spermatocytes (M). (N) Germ cells per testis cord quantified from histology (F,G) at 1dpp, and SOX9 immunofluorescence (S2 Fig) at 6dpp, 8dpp and 10dpp (the adult testis size was not quantified). Quantification of OCT4+ (O), PLZF+ (P) and KIT+ (Q) germ cells per cord from immunofluorescence (S1 Fig) (n = >30 testis cords counted from multiple animals, Mann-Whitney U test, p < .001). (N-Q) The control is shown in black and Kdm1aVasa is shown in blue. Scale bars, 25 μm.
Fig 3
Fig 3. Germ cell apoptosis in Kdm1aVasa mutants.
Quantification of Cleaved Caspase-3 (CC3) positive germ cells per testicular cord (C) from control (A) and Kdm1aVasa (B) testes (n = >30 testis cords counted from multiple animals), Mann-Whitney U test, p < .001). Arrows (A,B) indicate CC3 positive nuclei. Magnified inset (B) shows fragmented DNA in germ cells from a different Kdm1aVasa testis (DAPI: blue). TUNEL (green) from control (D) and Kdm1aVasa mutants (E) at 10dpp. Testicular cord boundaries are indicated by dashed lines. Scale bars, 25 μm.
Fig 4
Fig 4. Germ cell maintenance and meiotic defects in Kdm1aCagg adult testes.
Histology from control (A) and Kdm1aCagg testes (B,E-L), 7–9 weeks after the last tamoxifen injection to delete Kdm1a, showing mostly Sertoli cells remaining (arrowheads in B), spematogonia-like cells near or in the lumen (arrows in E), seminiferous tubule lacking a lumen (E,L), abnormally clumped germ cells (asterisk in F,J), abnormal spacing around cells (arrow in G,H) with vacuoles interspersed (arrowheads in G,H), germ cells with crescent shaped apoptotic morphology (arrowheads in F,I), giant spermatocyte-like apoptotic cells (arrowhead in J), chromosomal abnormalities (arrowheads in K), and multi-nucleated germ cells (arrowheads in L). Quantification of SOX9+ Sertoli cells (C) and germ cells per seminiferous tubule (D) in control and Kdm1aCagg testis (n = 3, controls and n = 4, Kdm1aCagg mutants, >25 seminiferous tubules per animal, Mann-Whitney U test, p < .05). Apoptosis marker CLEAVED CASPASE-3 (CC3)(green) merged with DAPI (red) (M,N) and meiotic marker SYCP-1 (yellow) (P,Q) and from control (M,P) and Kdm1aCagg mutants (N,Q). Quantification of the CC3 (O) and SYCP-1 (R) immunofluorescence (n = >30 seminiferous tubules counted from multiple animals, Mann-Whitney U test, p < .05). Scale bars, 25 μm.
Fig 5
Fig 5. KDM1A and H3K4me2 chromatin immunoprecipitation at Oct4.
(A) Average fold enrichment (KDM1A/no Ab) from chromatin immunoprecipitation (ChIP) at Oct4 in wild-type adult testes calculated from S4A Fig (n = 2, Unpaired t-test, p < .05). (B) Average fold enrichment (H3K4me2/no Ab) from ChIP at Oct4 in Kdm1aVasa (black) and control (white) testes calculated from S4C Fig (n = 3 animals, Unpaired t-test, p < .05). The location of the Oct4 promoter (prom) primers and the Oct4 distal (DE) and proximal enhancer (PE) primers are shown below panel A.
Fig 6
Fig 6. Ectopic expression of spermatogonia genes in Kdm1aCagg testes.
DAPI (A,D), OCT4 (B,E), and combined (C,F) immunofluorescence from wild-type (A-C) and Kdm1aCagg testes (D-F). Arrowheads in (B) indicate spermatogonia marked by OCT4, whereas arrows in (E) indicate OCT4 protein in spermatocyte-like cells. Asterisk (E) indicates OCT4 protein in post-meiotic spermatid-like cells. Quantification of the OCT4 (G) ectopic protein phenotype (n = >50 tubules counted from multiple animals, Mann-Whitney U test, p < .001). Scale bars, 25 μm.

References

    1. de Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001;121(3):347–54. Epub 2001/02/28. - PubMed
    1. Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S, O'Brien K, et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife. 2013;2:e00633 Epub 2013/06/26. 10.7554/eLife.00633 - DOI - PMC - PubMed
    1. Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature. 2012;482(7384):221–5. Epub 2012/02/03. 10.1038/nature10805 - DOI - PMC - PubMed
    1. Zhu D, Holz S, Metzger E, Pavlovic M, Jandausch A, Jilg C, et al. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun. 2014;5:3174 Epub 2014/01/23. 10.1038/ncomms4174 - DOI - PubMed
    1. Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta. 2012;1822(12):1838–50. Epub 2012/03/01. 10.1016/j.bbadis.2012.02.008 - DOI - PubMed

LinkOut - more resources