Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep;104(3):847-853.
doi: 10.1016/j.athoracsur.2017.01.119. Epub 2017 May 9.

Hybrid Extracorporeal Membrane Oxygenation Using Avalon Elite Double Lumen Cannula Ensures Adequate Heart/Brain Oxygen Supply

Affiliations

Hybrid Extracorporeal Membrane Oxygenation Using Avalon Elite Double Lumen Cannula Ensures Adequate Heart/Brain Oxygen Supply

Ju Zhao et al. Ann Thorac Surg. 2017 Sep.

Abstract

Background: Differential hypoxia exists in peripheral venoarterial (VA) extracorporeal membrane oxygenation (ECMO) patients with compromised lungs, causing hypoxic damage to heart or brain. We proposed an Avalon Elite (Maquet, Rastatt, Germany) double lumen cannula-based hybrid ECMO to add a venovenous (VV) blood flow into the pulmonary circulation onto the existing VA ECMO circuit to increase oxygen saturation in the left ventricle and ascending aorta, mitigating heart/brain hypoxia.

Methods: This hybrid ECMO circuit consists of two cannulas (27F Avalon Elite double lumen cannula from the inferior vena cava to the superior vena cava to right atrium to inferior vena cava; 17F infusion cannula in femoral artery), a blood pump, and a gas exchanger. This hybrid ECMO circuit was tested in 7 adult sheep with simulated lung failure. Total ECMO blood flow (2.8 to 3.3 L/min) was split between VV and VA blood flow. The VV blood flow was adjusted from 0% to 50% of total ECMO flow by approximately 10% increments.

Results: In VA ECMO, simulated respiratory failure resulted in differential hypoxia (low oxygen level in left ventricle and high oxygen level in abdominal aorta). In hybrid ECMO, adding VV blood flow (10% to 50% of total ECMO flow) to the VA ECMO circuit progressively increased left ventricle blood oxygen saturation from 70% ± 8% at zero VV blood flow (pure VA ECMO) to 82% ± 6% at 300 mL/min VV blood flow, and 96% ± 6% at 1,700 mL/min VV blood flow.

Conclusions: The Avalon Elite double-lumen cannula-based hybrid ECMO circuit is a simple circuit that provides efficient performance and flexible VA/VV blood distribution. In this hybrid ECMO circuit, incremental VV blood flow (10% to 50%) progressively increased left ventricular blood oxygen level, ensuring adequate heart and brain oxygen supply.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources