Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces
- PMID: 28500308
- PMCID: PMC5432034
- DOI: 10.1038/s41467-017-00019-3
Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces
Abstract
Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 μJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.Metasurfaces are not adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. Here, Shcherbakov et al. realise an ultrafast tunable metasurface with picosecond-scale large absolute reflectance modulation at low pump fluences.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
References
-
- Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat. Photonics. 2014;8:889–898. doi: 10.1038/nphoton.2014.247. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
