Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 28:8:751.
doi: 10.3389/fmicb.2017.00751. eCollection 2017.

Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions

Affiliations

Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions

Mark Trinder et al. Front Microbiol. .

Abstract

Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

Keywords: Drosophila melanogaster; animal model; fruit fly; microbiome; microbiota; prebiotic; probiotic; symbiosis.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
A hypothesized pipeline approach investigating host–microbe interactions. Comparisons between the Drosophila melanogaster, C57BL/6 mice, and human gut anatomy and microbiota. Taxonomical distribution data for top phyla in D. melanogaster are based off 454 tag pyrosequencing (Blum et al., 2013). C57BL/6 mice and human data are based off a 2.6 and 4.6 M catalog, respectively (Xiao et al., 2015). Stock clipart images from Servier Medical Art by Servier were used and modified under the Creative Commons Attribution 3.0 Unported License.
FIGURE 2
FIGURE 2
Schematic diagram illustrating the high-throughput potential of D. melanogaster to investigate host–microbe interactions. Conventional, mono-associated, and germ-free D. melanogaster can be used to mechanistically dissect the effects of a given microbe on (A) innate immune system signaling, (B) pathogen exclusion, (C) xenobiotic biotransformation and associated effects on the microbiota, and (D) important endpoints such as lifespan, development, and behavior.

Similar articles

Cited by

References

    1. Apidianakis Y., Rahme L. G. (2009). Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat. Protoc. 4 1285–1294. 10.1038/nprot.2009.124 - DOI - PubMed
    1. Apidianakis Y., Rahme L. G. (2011). Drosophila melanogaster as a model for human intestinal infection and pathology. Dis. Model. Mech. 4 21–30. 10.1242/dmm.003970 - DOI - PMC - PubMed
    1. Bäckhed F., Fraser C. M., Ringel Y., Sanders M. E., Sartor R. B., Sherman P. M., et al. (2012). Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12 611–622. 10.1016/j.chom.2012.10.012 - DOI - PubMed
    1. Benoit J. B., Vigneron A., Broderick N. A., Wu Y., Sun J. S., Carlson J. R., et al. (2017). Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. Elife 6:e19535 10.7554/eLife.19535 - DOI - PMC - PubMed
    1. Blum J. E., Fischer C. N., Miles J., Handelsman J. (2013). Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e860–13. 10.1128/mBio.00860-13 - DOI - PMC - PubMed

LinkOut - more resources