Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Sep:139:51-65.
doi: 10.1242/jeb.139.1.51.

Optimizing release from peptide hormone secretory nerve terminals

Affiliations
Review

Optimizing release from peptide hormone secretory nerve terminals

R J Bicknell. J Exp Biol. 1988 Sep.

Abstract

Secretion of the peptide neurohormones oxytocin and vasopressin from terminals of magnocellular neurones in the mammalian neurohypophysis is elicited by conduction of depolarizing action potentials into terminal membranes, inducing opening of voltage-sensitive Ca2+ channels, entry of Ca2+ from the extracellular space and a rise in cytoplasmic Ca2+ concentration. The amount of peptide released per action potential is not immutable. In particular, the patterns in which action potentials are generated at the cell somata of the two types of neurone each appear exquisitely suited to optimize the release process at the terminal by utilizing a frequency-facilitation mechanism and by minimizing a mechanism of fatigue in the release process. The different properties of oxytocin and vasopressin neurones are of important physiological significance. The secretory terminals are also a site of receptor-mediated influences of neuromodulators which can greatly alter release efficiency. The mechanisms underlying facilitation and fatigue are not clearly understood. The evidence suggests that processes both prior to depolarization of the terminals (propagation and form of the action potentials) and directly at the terminals (frequency/pattern-dependent Ca2+ entry and channel openings) are involved. Transient activity-related increases in extracellular K+ concentration may be involved at both sites. Two types of neuromodulation have been partly characterized. Kappa-Opioid receptors in secretory terminal membranes directly modulate depolarization-evoked peptide release probably via interactions with Ca2+ channels. beta-Adrenergic receptors localized on neurohypophyseal astroglial cells mediate more subtle effects of noradrenaline. In the more chronic situation the neurohypophyseal astroglia alter their morphological relationships with neurosecretory elements and the basal lamina at release sites, changes which may also serve to optimize the secretory process.

PubMed Disclaimer

LinkOut - more resources