Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy
- PMID: 28503999
- PMCID: PMC5669347
- DOI: 10.1177/0271678X17706444
Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy
Abstract
Quantitative assessment of cerebral glucose consumption rate (CMRglc) and tricarboxylic acid cycle flux (VTCA) is crucial for understanding neuroenergetics under physiopathological conditions. In this study, we report a novel in vivo Deuterium (2H) MRS (DMRS) approach for simultaneously measuring and quantifying CMRglc and VTCA in rat brains at 16.4 Tesla. Following a brief infusion of deuterated glucose, dynamic changes of isotope-labeled glucose, glutamate/glutamine (Glx) and water contents in the brain can be robustly monitored from their well-resolved 2H resonances. Dynamic DMRS glucose and Glx data were employed to determine CMRglc and VTCA concurrently. To test the sensitivity of this method in response to altered glucose metabolism, two brain conditions with different anesthetics were investigated. Increased CMRglc (0.46 vs. 0.28 µmol/g/min) and VTCA (0.96 vs. 0.6 µmol/g/min) were found in rats under morphine as compared to deeper anesthesia using 2% isoflurane. This study demonstrates the feasibility and new utility of the in vivo DMRS approach to assess cerebral glucose metabolic rates at high/ultrahigh field. It provides an alternative MRS tool for in vivo study of metabolic coupling relationship between aerobic and anaerobic glucose metabolisms in brain under physiopathological states.
Keywords: Brain glucose metabolisms; TCA cycle; cerebral metabolic rate of glucose; deuterium magnetic resonance spectroscopy (2H MRS); glycolysis.
Figures





References
-
- Gruetter R, Novotny EJ, Boulware SD, et al. Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem 1994; 63: 1377–1385. - PubMed
-
- Henry PG, Adriany G, Deelchand D, et al. In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn Reson Imaging 2006; 24: 527–539. - PubMed
-
- Mason GF, Gruetter R, Rothman DL, et al. Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 1995; 15: 12–25. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources