MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature
- PMID: 28504475
- PMCID: PMC5489227
- DOI: 10.1002/ajmg.c.31559
MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature
Abstract
Investigation of disorders of sex development (DSD) has resulted in the discovery of multiple sex-determining genes. MAP3K1 encodes a signal transduction regulator in the sex determination pathway and is emerging as one of the more common genes responsible for 46,XY DSD presenting as complete or partial gonadal dysgenesis. Clinical assessment, endocrine evaluation, and genetic analysis were performed in six individuals from four unrelated families with 46,XY DSD. All six individuals were found to have likely pathogenic MAP3K1 variants. Three of these individuals presented with complete gonadal dysgenesis, characterized by bilateral streak gonads with typical internal and external female genitalia, while the other three presented with partial gonadal dysgenesis, characterized by incomplete testicular development, resulting in clitoral hypertrophy with otherwise typical female external genitalia. Testing for MAP3K1 variants should be considered in patients with 46,XY complete or partial gonadal dysgenesis, particularly in families with multiple members affected with 46,XY DSD. Identification of a MAP3K1 variant should prompt an evaluation for DSD in female siblings of the proband.
Keywords: MAP3K1; 46,XY DSD; disorders of sex development; gonadal dysgenesis.
© 2017 Wiley Periodicals, Inc.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures

References
-
- Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, Bargman R, Keegan C, Travers S, Schelley S, Hudgins L, Mathew RP, Stalker HJ, Zori R, Gordon OK, Ramos-Platt L, Pawlikowska-Haddal A, Eskin A, Nelson SF, Delot E, Vilain E. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab. 2015;100:E333–344. - PMC - PubMed
-
- Cool J, Capel B. Mixed signals: development of the testis. Semin Reprod Med. 2009;27:5–13. - PubMed
-
- Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10:673–683. - PubMed
-
- Eggers S, Sadedin S, van den Bergen JA, Robevska G, Ohnesorg T, Hewitt J, Lambeth L, Bouty A, Knarston IM, Tan TY, Cameron F, Werther G, Hutson J, O’Connell M, Grover SR, Heloury Y, Zacharin M, Bergman P, Kimber C, Brown J, Webb N, Hunter MF, Srinivasan S, Titmuss A, Verge CF, Mowat D, Smith G, Smith J, Ewans L, Shalhoub C, Crock P, Cowell C, Leong GM, Ono M, Lafferty AR, Huynh T, Visser U, Choong CS, McKenzie F, Pachter N, Thompson EM, Couper J, Baxendale A, Gecz J, Wheeler BJ, Jefferies C, MacKenzie K, Hofman P, Carter P, King RI, Krausz C, van Ravenswaaij-Arts CM, Looijenga L, Drop S, Riedl S, Cools M, Dawson A, Juniarto AZ, Khadilkar V, Khadilkar A, Bhatia V, Dung VC, Atta I, Raza J, Thi Diem Chi N, Hao TK, Harley V, Koopman P, Warne G, Faradz S, Oshlack A, Ayers KL, Sinclair AH. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016;17:243. - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous