Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug:136:12-28.
doi: 10.1016/j.biomaterials.2017.05.017. Epub 2017 May 10.

An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration

Affiliations

An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration

Yibo Gan et al. Biomaterials. 2017 Aug.

Abstract

Hydrogel is a suitable scaffold for the nucleus pulposus (NP) regeneration. However, its unmatched mechanical properties lead to implant failure in late-stage disc degeneration because of structural failure and implant extrusion after long-term compression. In this study, we evaluated an interpenetrating network (IPN)-strengthened and toughened hydrogel for NP regeneration, using dextran and gelatin as the primary network while poly (ethylene glycol) as the secondary network. The aim of this study was to realize the NP regeneration using the hydrogel. To achieve this, we optimized its properties by adjusting the mass ratios of the secondary/primary networks and determining the best preparation conditions for NP regeneration in a series of biomechanical, cytocompatibility, tissue engineering, and in vivo study. We found the optimal formulation of the IPN hydrogel, at a secondary/primary network ratio of 1:4, exhibited high toughness (the compressive strain reached 86%). The encapsulated NP cells showed increasing proliferation, cell clustering and matrix deposition. Furthermore, the hydrogel could support long-term cell retention and survival in the rat IVDs. It facilitated rehydration and regeneration of porcine degenerative NPs. In conclusion, this study demonstrates the tough IPN hydrogel could be a promising candidate for functional disc regeneration in future.

Keywords: Hydrogel; Interpenetrating network; Intervertebral disc; Minimally invasive surgery; Nucleus pulposus; Tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources