Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 16:8:15451.
doi: 10.1038/ncomms15451.

Whole genome analysis of a schistosomiasis-transmitting freshwater snail

Coen M Adema  1 LaDeana W Hillier  2 Catherine S Jones  3 Eric S Loker  1 Matty Knight  4   5 Patrick Minx  2 Guilherme Oliveira  6   7 Nithya RaghavanAndrew Shedlock  8 Laurence Rodrigues do Amaral  9 Halime D Arican-Goktas  10 Juliana G Assis  6 Elio Hideo Baba  6 Olga L Baron  11 Christopher J Bayne  12 Utibe Bickham-Wright  13 Kyle K Biggar  14 Michael Blouin  12 Bryony C Bonning  15 Chris Botka  16 Joanna M Bridger  10 Katherine M Buckley  17 Sarah K Buddenborg  1 Roberta Lima Caldeira  18 Julia Carleton  19 Omar S Carvalho  18 Maria G Castillo  20 Iain W Chalmers  21 Mikkel Christensens  22 Sandra Clifton  2 Celine Cosseau  23 Christine Coustau  11 Richard M Cripps  24 Yesid Cuesta-Astroz  6 Scott F Cummins  25 Leon di Stephano  26   27 Nathalie Dinguirard  13 David Duval  23 Scott Emrich  28 Cédric Feschotte  19 Rene Feyereisen  29 Peter FitzGerald  30 Catrina Fronick  2 Lucinda Fulton  2 Richard Galinier  23 Sandra G Gava  6 Michael Geusz  31 Kathrin K Geyer  21 Gloria I Giraldo-Calderón  28 Matheus de Souza Gomes  9 Michelle A Gordy  31 Benjamin Gourbal  23 Christoph Grunau  23 Patrick C Hanington  32 Karl F Hoffmann  21 Daniel Hughes  22 Judith Humphries  33 Daniel J Jackson  34 Liana K Jannotti-Passos  6 Wander de Jesus Jeremias  6 Susan Jobling  35 Bishoy Kamel  36 Aurélie Kapusta  19 Satwant Kaur  35 Joris M Koene  37 Andrea B Kohn  38 Dan Lawson  22 Scott P Lawton  39 Di Liang  25 Yanin Limpanont  25 Sijun Liu  15 Anne E Lockyer  35 TyAnna L Lovato  24 Fernanda Ludolf  6 Vince Magrini  2 Donald P McManus  40 Monica Medina  36 Milind Misra  1 Guillaume Mitta  23 Gerald M Mkoji  41 Michael J Montague  42 Cesar Montelongo  20 Leonid L Moroz  38 Monica C Munoz-Torres  43 Umar Niazi  21 Leslie R Noble  3 Francislon S Oliveira  6 Fabiano S Pais  6 Anthony T Papenfuss  26   27 Rob Peace  44 Janeth J Pena  1 Emmanuel A Pila  32 Titouan Quelais  23 Brian J Raney  45 Jonathan P Rast  17 David Rollinson  46 Izinara C Rosse  6 Bronwyn Rotgans  25 Edwin J Routledge  35 Kathryn M Ryan  24 Larissa L S Scholte  6 Kenneth B Storey  14 Martin Swain  21 Jacob A Tennessen  12 Chad Tomlinson  2 Damian L Trujillo  24 Emanuela V Volpi  47 Anthony J Walker  39 Tianfang Wang  25 Ittiprasert Wannaporn  4 Wesley C Warren  2 Xiao-Jun Wu  13 Timothy P Yoshino  13 Mohammed Yusuf  48   49 Si-Ming Zhang  1 Min Zhao  25 Richard K Wilson  2
Affiliations

Whole genome analysis of a schistosomiasis-transmitting freshwater snail

Coen M Adema et al. Nat Commun. .

Erratum in

  • Corrigendum: Whole genome analysis of a schistosomiasis-transmitting freshwater snail.
    Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, Oliveira G, Raghavan N, Shedlock A, do Amaral LR, Arican-Goktas HD, Assis JG, Baba EH, Baron OL, Bayne CJ, Bickham-Wright U, Biggar KK, Blouin M, Bonning BC, Botka C, Bridger JM, Buckley KM, Buddenborg SK, Lima Caldeira R, Carleton J, Carvalho OS, Castillo MG, Chalmers IW, Christensens M, Clifton S, Cosseau C, Coustau C, Cripps RM, Cuesta-Astroz Y, Cummins SF, Di Stefano L, Dinguirard N, Duval D, Emrich S, Feschotte C, Feyereisen R, FitzGerald P, Fronick C, Fulton L, Galinier R, Gava SG, Geusz M, Geyer KK, Giraldo-Calderón GI, de Souza Gomes M, Gordy MA, Gourbal B, Grunau C, Hanington PC, Hoffmann KF, Hughes D, Humphries J, Jackson DJ, Jannotti-Passos LK, de Jesus Jeremias W, Jobling S, Kamel B, Kapusta A, Kaur S, Koene JM, Kohn AB, Lawson D, Lawton SP, Liang D, Limpanont Y, Liu S, Lockyer AE, Lovato TAL, Ludolf F, Magrini V, McManus DP, Medina M, Misra M, Mitta G, Mkoji GM, Montague MJ, Montelongo C, Moroz LL, Munoz-Torres MC, Niazi U, Noble LR, Oliveira FS, Pais FS, Papenfuss AT, Peace R, Pena JJ, Pila EA, Quelais T, Raney BJ, Rast JP, Rollinson D, Rosse IC, Rotgans B, Routledge EJ, Ryan KM, Scholte LLS, Storey KB, Swai… See abstract for full author list ➔ Adema CM, et al. Nat Commun. 2017 Aug 23;8:16153. doi: 10.1038/ncomms16153. Nat Commun. 2017. PMID: 28832025 Free PMC article.

Abstract

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1. Candidate chemosensory receptors of B. glabrata.
(a) LGUN_random_Scaffold39 contains fourteen candidate chemosensory receptor (CR) genes (BgCRa-n). Most encode seven-transmembrane domain G-protein-coupled receptor-like proteins, BgCRm and BgCRn are truncated to six-transmembrane domains. See Supplementary Data 11 for gene model identifiers. (b) Phylogenetic analysis (neighbour joining, scale bar represents amino-acid substitutions per site) of chemosensory receptors on LGUN_random_Scaffold39 (protein-level). (c) Schematic of receptor showing conserved and invariable amino acids, transmembrane domains I-VII; and location of glycosylation sites. (d) Scanning electron micrograph showing anterior tentacle, with cilia covering the surface. Scale bar, 20 μm (top); 10 μm (bottom). (e) RT–PCR gel showing amplicon for BgCR509a and actin from B. glabrata tentacle. (f,g) In situ hybridization showing sense (negative control) and antisense localization of BgCR509a mRNA in anterior tentacle section (purple). Scale bar (f): 100 μm; (g) 50 μm.
Figure 2
Figure 2. TLR genes in B. glabrata.
(a) Analysis of the (complete) TIR domains from BgTLRs identified seven classes (neighbour-joining tree, scale bar represents amino-acid substitutions per site). Bootstrap values shown for 1,000 replicates. Comparisons included TLRs from A. californica (Ac), L. gigantea (Lg), Mytilus galloprovincialis (Mg) and C. gigas (Cg). The presence or absence of orthologues of each class in each molluscan species is indicated. A representative of the B. glabrata class 1/2/3 clade is present within A. californica, but is independent of the B. glabrata TLR classes (indicated by the large pink box). Grey font indicates pseudogenes or partial genes. (b) B. glabrata has both single cysteine cluster (scc; blue line)- and multiple cysteine cluster (mcc; orange line) TLRs. Domain structures are shown for BgTLR classes. BgTLRs consist of an LRRNT (orange hexagon), a series of LRRs (ovals), a variable region (curvy line), LRRCT (yellow box), and transmembrane domain, and an intracellular TIR domain (hexagon). The dark blue ovals indicate well defined LRRs (predicted by LRRfinder57); light blue ovals are less confident predictions. Each of the two class 7 BgTLRs has a distinct ectodomain structure. The numbers of complete, pseudogenes (Ψ) and partial genes are indicated for each class.
Figure 3
Figure 3. Expression of cardiac genes and actin genes in B. glabrata tissues.
(a) Cardiac regulatory genes. (b) Cardiac structural genes. (c) Relative expression of actin genes in B. glabrata tissues. For (ac), the score represents gene level aggregate of normalized FPKM counts for de novo assembled tissue transcripts, relative to expression levels in the heart/APO sample. The counts were scaled (with median read count as 0) to indicate expression intensity with red indicating highest, blue lowest. AG, Albumen gland; BUC, buccal mass; CNS, central nervous system; DG, digestive gland; FOOT, headfoot; HAPO, heart/APO; KID, kidney; MAN, mantle edge; OVO, ovotestes; SAL, salivary glands; STO, stomach; TRG, terminal genitalia. (d) Maximum Likelihood tree (Phylogeny.fr, scale bar represents amino-acid substitutions per site) showing phylogenetic relationships of actin genes, based on amino-acid sequence alignment (ClustalW). Biomphalaria -snail; Crassostrea gigas—oyster; Haliotis iris– abalone;, Hirudo medicinalis – leech (all lophotrochozoans); Amphimedon queenslandica, sponge, Prebilateria, ophotrochozoans), Drosophila melanogaster—fruit fly, Ecdysozoa), and the deuterostomes Ciona intestinalis, sea squirt; Homo sapiens, human. See Supplementary Note 31 for accession numbers.
Figure 4
Figure 4. Comparison of molluscan shell forming proteomes.
Circos diagram of 177 mantle-specific, secreted Biomphalaria gene products compared against shell forming proteomes of six other molluscs (BLASTp threshold ≤10e−6). Protein pairs that share sequence similarity in the top quartile are linked in purple, the second quartile is linked in blue, third quartile has orange links and lowest quartile of similarity has grey links. Species that occupy marine habitats are surrounded by a solid line, A finely dashed line identifies the terrestrial species Cepea nemoralis, the freshwater species B. glabrata has a coarse line. Percentages (and proportions in brackets) indicate the number of proteins that shared similarity with a Biomphalaria shell forming candidate gene. The width of each sector line around the ideogram is proportional to the length of that gene in basepairs. Photographs taken by DJ Jackson, with exception of photograph of C. gigas, by David Monniaux, distributed under a CC-A SA 3.0 license.
Figure 5
Figure 5. Transposable element (TE) landscape of B. glabrata.
(a) Left: proportion (%) of the genome assembly annotated as TE (black). Right: TE composition by class (indicating % of the genome corresponding to each class). (b) Evolutionary view of TE landscape. For each class, cumulative amounts of DNA (in Mb) are shown as function of the percentage of divergence from the consensus (by bins of 1%, first one being ≥0 and <1; see Supplementary Note 32 for Methods). Percentage of divergence from consensus is used as a proxy for age: the older the invasion of the TE is, the more copies will have accumulated mutations (higher percentage of divergence, right of the graph; left of the graph: youngest elements showing little divergence from consensus). Note that the result of this analysis of assembled sequence does not exclude the likelihood that intact transposable elements are present in B. glabrata. Colors are as in a. RC, rolling circle.

References

    1. Paraense W. L. The schistosome vectors in the Americas. Mem. Inst. Oswaldo Cruz 96, (Suppl): 7–16 (2001). - PubMed
    1. King C. H. Parasites and poverty: The case of schistosomiasis. Acta Trop. 113, 95–104 (2010). - PMC - PubMed
    1. Doenhoff M. J. et al. Praziquantel: Its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136, 1825–1835 (2009). - PubMed
    1. Melman S. D. et al. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 3, e504–e504 (2009). - PMC - PubMed
    1. Rollinson D. et al. Time to set the agenda for schistosomiasis elimination. Acta Trop. 128, 423–440 (2013). - PubMed

Publication types