Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Dec;58(1):6.
doi: 10.1186/s40529-016-0159-1. Epub 2017 Jan 3.

Multiple regulatory roles of AP2/ERF transcription factor in angiosperm

Affiliations
Review

Multiple regulatory roles of AP2/ERF transcription factor in angiosperm

Chao Gu et al. Bot Stud. 2017 Dec.

Abstract

APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) is a superfamily in plant kingdom, which has been reported to be involved in regulation of plant growth and development, fruit ripening, defense response, and metabolism. As the final response gene in ethylene signaling pathway, AP2/ERF TF could feedback modulate phytohormone biosynthesis, including ethylene, cytokinin, gibberellin, and abscisic acid. Moreover, AP2/ERF TF also participates in response to the signals of auxin, cytokinin, abscisic acid, and jasmonate. Thus, this superfamily is key regulator for connecting the phytohormonal signals. In this review, based on the evidence of structural and functional studies, we discussed the multiple regulator roles of AP2/ERF TF in angiosperm, and then constructed the network model of AP2/ERF TF in response to various phytohormonal signals and regulatory mechanism of the cross-talk.

Keywords: AP2/ERF TF; Fruit ripening; Phytohormones; Plant growth and development; Stress.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
A network model for AP2/ERF genes response to phytohormones and regulating downstream effectors in angiosperm. Ethylene biosynthesis pathway, ethylene signaling pathway, and ripening regulators are indicated by yellow, green, and gray colors, respectively. AP2/ERF family members is boxed and filled with red color. In ethylene biosynthesis pathway, S-adenosine methionine (SAM) is converted to ethylene (ET) via an intermediate metabolites 1-aminocyclopropane-1-carboxyla (ACC), underlying the catalysis of the two enzymes 1-aminocyclopropane-1-carboxyla synthase (ACS) and oxidase (ACO). In ethylene signaling pathway, ET is firstly combined with ethylene receptor (ETR) to activate constitutive triple response (CTR), leading to expression of ethylene insensitive (EIN) and EIN-induced ethylene insensitive-like (EIL). EIL promote expression of ethylene response factor (ERF), including activator and repressor. The ERF activities are induced by auxin (IAA), cytokinin (CTK), abscisic acid (ABA), and jasmonate (JA), as well as ripening-related genes, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and Homeodomain-leucine zipper HOMEOBOX (HB-1). Meanwhile, ERF can reduce CTK and gibberellin (GA) levels but increase ABA biosynthesis. In ethylene responses, ERF also regulate ethylene level by enhancing and decreasing ACS/ACO activity mediated by the activators and repressors, respectively. As for effectors of plant growth, defense responses and fruit ripening, ERF can directly medium the expression by binding to GCC-box/DREB element in the promoter, and have the ability to indirectly regulate it, due to few ERFs inhibit expression of RIN, NOR, CNR, and HB-1 that can directly bind to the promoter of effectors

References

    1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15:63–78. doi: 10.1105/tpc.006130. - DOI - PMC - PubMed
    1. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell. 2004;16:2463–2480. doi: 10.1105/tpc.104.022897. - DOI - PMC - PubMed
    1. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53:2039–2055. doi: 10.1093/jxb/erf072. - DOI - PubMed
    1. Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 2010;154:861–873. doi: 10.1104/pp.110.163949. - DOI - PMC - PubMed
    1. Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29:23–32. doi: 10.1046/j.1365-313x.2002.01191.x. - DOI - PubMed

LinkOut - more resources