Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 7;139(22):7448-7451.
doi: 10.1021/jacs.7b03539. Epub 2017 May 23.

Scalable, Electrochemical Oxidation of Unactivated C-H Bonds

Affiliations

Scalable, Electrochemical Oxidation of Unactivated C-H Bonds

Yu Kawamata et al. J Am Chem Soc. .

Abstract

A practical electrochemical oxidation of unactivated C-H bonds is presented. This reaction utilizes a simple redox mediator, quinuclidine, with inexpensive carbon and nickel electrodes to selectively functionalize "deep-seated" methylene and methine moieties. The process exhibits a broad scope and good functional group compatibility. The scalability, as illustrated by a 50 g scale oxidation of sclareolide, bodes well for immediate and widespread adoption.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(A) The challenge of electrochemical C–H oxidation. (B) Reaction development and optimization. (C) Cyclic voltammograms of selected mediators.
Scheme 1
Scheme 1. Scope of the Quinuclidine-Mediated Electrochemical C–H Oxidation
Figure 2
Figure 2
(A) 50 g scale C–H oxidation of sclareolide enabled the synthesis of 2-oxo-yahazunone. (B) Putative mechanism for the quinuclidine-mediated electrochemical C–H oxidation.

References

    1. Horn E. J.; Rosen B. R.; Chen Y.; Tang J.; Chen K.; Eastgate M. D.; Baran P. S. Nature 2016, 533, 77.10.1038/nature17431. - DOI - PMC - PubMed
    1. Eberson L.; Nyberg K. Tetrahedron 1976, 32, 2185.10.1016/0040-4020(76)85132-0. - DOI
    1. Luca O. R.; Gustafson J. L.; Maddox S. M.; Fenwick A. Q.; Smith D. C. Org. Chem. Front. 2015, 2, 823.10.1039/C5QO00075K. - DOI
    2. Roth H. G.; Romero N. A.; Nicewicz D. A. Synlett 2016, 27, 714.10.1055/s-0035-1561297. - DOI
    1. For examples of direct anodic oxidations of unactivated sp3 C–H bonds, see:

    2. Koch V. R.; Miller L. L. J. Am. Chem. Soc. 1973, 95, 8631.10.1021/ja00807a022. - DOI
    3. Fritz H. P.; Würminghausen T. J. Chem. Soc., Perkin Trans. 1 1976, 610.10.1039/P19760000610. - DOI
    4. Hembrock A.; Schäfer H. J.; Zimmermann G. Angew. Chem., Int. Ed. Engl. 1985, 24, 1055.10.1002/anie.198510551. - DOI
    1. Curci R.; D’Accolti L.; Fusco C. Acc. Chem. Res. 2006, 39, 1.10.1021/ar050163y. - DOI - PubMed
    2. Newhouse T. R.; Baran P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.10.1002/anie.201006368. - DOI - PMC - PubMed
    3. Chen K.; Eschenmoser A.; Baran P. S. Angew. Chem., Int. Ed. 2009, 48, 9705.10.1002/anie.200904474. - DOI - PMC - PubMed
    4. Crandall J. K.; Curci R.; D’Accolti L.; Fusco C.; Fusco C.; D’Accolti L.; Annese C.. Methyl(trifluoromethyl)dioxirane. In Encyclopedia of Reagents for Organic Synthesis; Fuchs P., Bode J. W., Charette A. B., Rovis T., Eds.; Wiley: New York, 2016.

Publication types