Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2017 May 16;14(5):e1002299.
doi: 10.1371/journal.pmed.1002299. eCollection 2017 May.

Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial

Affiliations
Randomized Controlled Trial

Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial

Tesfay Abreha et al. PLoS Med. .

Erratum in

Abstract

Background: Recent efforts in malaria control have resulted in great gains in reducing the burden of Plasmodium falciparum, but P. vivax has been more refractory. Its ability to form dormant liver stages confounds control and elimination efforts. To compare the efficacy and safety of primaquine regimens for radical cure, we undertook a randomized controlled trial in Ethiopia.

Methods and findings: Patients with normal glucose-6-phosphate dehydrogenase status with symptomatic P. vivax mono-infection were enrolled and randomly assigned to receive either chloroquine (CQ) or artemether-lumefantrine (AL), alone or in combination with 14 d of semi-supervised primaquine (PQ) (3.5 mg/kg total). A total of 398 patients (n = 104 in the CQ arm, n = 100 in the AL arm, n = 102 in the CQ+PQ arm, and n = 92 in the AL+PQ arm) were followed for 1 y, and recurrent episodes were treated with the same treatment allocated at enrolment. The primary endpoints were the risk of P. vivax recurrence at day 28 and at day 42. The risk of recurrent P. vivax infection at day 28 was 4.0% (95% CI 1.5%-10.4%) after CQ treatment and 0% (95% CI 0%-4.0%) after CQ+PQ. The corresponding risks were 12.0% (95% CI 6.8%-20.6%) following AL alone and 2.3% (95% CI 0.6%-9.0%) following AL+PQ. On day 42, the risk was 18.7% (95% CI 12.2%-28.0%) after CQ, 1.2% (95% CI 0.2%-8.0%) after CQ+PQ, 29.9% (95% CI 21.6%-40.5%) after AL, and 5.9% (95% CI 2.4%-13.5%) after AL+PQ (overall p < 0.001). In those not prescribed PQ, the risk of recurrence by day 42 appeared greater following AL treatment than CQ treatment (HR = 1.8 [95% CI 1.0-3.2]; p = 0.059). At the end of follow-up, the incidence rate of P. vivax was 2.2 episodes/person-year for patients treated with CQ compared to 0.4 for patients treated with CQ+PQ (rate ratio: 5.1 [95% CI 2.9-9.1]; p < 0.001) and 2.3 episodes/person-year for AL compared to 0.5 for AL+PQ (rate ratio: 6.4 [95% CI 3.6-11.3]; p < 0.001). There was no difference in the occurrence of adverse events between treatment arms. The main limitations of the study were the early termination of the trial and the omission of haemoglobin measurement after day 42, resulting in an inability to estimate the cumulative risk of anaemia.

Conclusions: Despite evidence of CQ-resistant P. vivax, the risk of recurrence in this study was greater following treatment with AL unless it was combined with a supervised course of PQ. PQ combined with either CQ or AL was well tolerated and reduced recurrence of vivax malaria by 5-fold at 1 y.

Trial registration: ClinicalTrials.gov NCT01680406.

PubMed Disclaimer

Conflict of interest statement

LvS receives a stipend as a specialty consulting editor for PLOS Medicine and serves on the journal's editorial board.

Figures

Fig 1
Fig 1. CONSORT flowchart of patient allocation for the day 42 outcome.
AL, artemether-lumefantrine; AL+PQ, artemether-lumefantrine + primaquine; CQ, chloroquine; CQ+PQ, chloroquine + primaquine; G6PD, glucose-6-phosphate dehydrogenase; Lost, lost to follow-up.
Fig 2
Fig 2. Cumulative risk of P. vivax recurrence in all four treatment arms over the entire follow-up time.
AL, artemether-lumefantrine; AL+PQ, artemether-lumefantrine + primaquine; CQ, chloroquine; CQ+PQ, chloroquine + primaquine.
Fig 3
Fig 3. Histogram of the distribution of the number of recurrent P. vivax infections occurring during the 1-y follow-up period.
AL, artemether-lumefantrine; AL+PQ, artemether-lumefantrine + primaquine; CQ, chloroquine; CQ+PQ, chloroquine + primaquine.

References

    1. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010;4(8):e774 10.1371/journal.pntd.0000774 - DOI - PMC - PubMed
    1. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87. - PMC - PubMed
    1. World Health Organization. World malaria report 2014. Geneva: World Health Organization; 2014.
    1. Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(10):982–91. 10.1016/S1473-3099(14)70855-2 - DOI - PMC - PubMed
    1. Douglas NM, Pontororing GJ, Lampah DA, Yeo TW, Kenangalem E, Poespoprodjo JR, et al. Mortality attributable to Plasmodium vivax malaria: a clinical audit from Papua, Indonesia. BMC Med. 2014;12:217 10.1186/s12916-014-0217-z - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data