Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep;8(9):3636-46.
doi: 10.1128/mcb.8.9.3636-3646.1988.

Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP7, a protein of the large subunit of the mitochondrial ribosome

Affiliations

Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP7, a protein of the large subunit of the mitochondrial ribosome

K Fearon et al. Mol Cell Biol. 1988 Sep.

Abstract

The gene for MRP7, a 40-kilodalton protein of the large subunit of the yeast mitochondrial ribosome, was identified in a lambda gt11 expression library by immunological screening with a monoclonal antibody to MRP7. An intact copy of MRP7 was then isolated from a yeast genomic library by colony hybridization. Gene disruption showed that MRP7 protein was essential for ribosomal function. Sequencing of MRP7 revealed a coding region for a basic (pI 10.6), 43.2-kilodalton protein containing 371 amino acid residues. Amino acid residues 28 to 112 of the deduced MRP7 sequence aligned with the 84 residues of the Escherichia coli ribosomal protein L27, but no significant similarity was detected between the carboxy-terminal 259 amino acids of MRP7 and other protein sequences in existing computer data bases. Within the aligned region, there was 49% amino acid identity between MRP7 and L27, compared with the 57% identity observed between L27 and its homolog in Bacillus stearothermophilus. The steady-state levels of the MRP7 protein and its mRNA were monitored in response to catabolite repression and to increased dosage of the MRP7 gene. The response to catabolite repression was characterized by a ninefold change in the level of the protein and little, if any, change in the level of the mRNA. In cells carrying the MRP7 gene on a high-copy-number plasmid, the mRNA was increased 20-fold, but there was no significant increase in MRP7 protein. Furthermore, MRP7 mRNA and protein accumulated at normal levels in [rho0] cells, which are devoid of 21S rRNA, indicating that the protein is relatively stable in the absence of ribosome assembly. Together, these results suggest that MRP7 is regulated posttranscriptionally, probably at the level of protein synthesis rather than protein turnover.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plasmid. 1985 Jan;13(1):31-40 - PubMed
    1. Mol Cell Biol. 1985 Jun;5(6):1512-21 - PubMed
    1. Cell. 1987 Mar 27;48(6):1047-60 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Annu Rev Biochem. 1985;54:507-30 - PubMed

Publication types

MeSH terms

Associated data