Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 25;5(8):1526-1530.
doi: 10.1039/c7bm00304h.

Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure

Affiliations

Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure

Jugal Kishore Sahoo et al. Biomater Sci. .

Abstract

Supramolecular chemistry enables the creation of a diversity of nanostructures and materials. Many of these have been explored for applications as biomaterials and therapeutics. Among them, self-assembling peptides have been broadly applied. The structural diversity afforded from the library of amino acid building blocks has enabled control of emergent properties across length-scales. Here, we report on a family of amphiphilic tripeptides with sequence-controlled nanostructure. By altering one amino acid in these peptides, we can produce a diversity of nanostructures with different aspect-ratio and geometry. Peptides that produce high aspect-ratio structures can physically entangle to form hydrogels, which support cell viability in culture. Importantly, in comparison to many other short self-assembling peptide biomaterials, those reported here form filamentous nanostructures in the absence of typical secondary structures (i.e., β-sheet). Thus, we have illustrated a facile way to obtain versatile biomaterials with different nanostructural morphology from short and defined peptide sequences.

PubMed Disclaimer

LinkOut - more resources