Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep;28(5):675-684.
doi: 10.1097/EDE.0000000000000684.

Risk of Lung Cancer Mortality in Nuclear Workers from Internal Exposure to Alpha Particle-emitting Radionuclides

Affiliations

Risk of Lung Cancer Mortality in Nuclear Workers from Internal Exposure to Alpha Particle-emitting Radionuclides

James Grellier et al. Epidemiology. 2017 Sep.

Abstract

Background: Carcinogenic risks of internal exposures to alpha-emitters (except radon) are poorly understood. Since exposure to alpha particles-particularly through inhalation-occurs in a range of settings, understanding consequent risks is a public health priority. We aimed to quantify dose-response relationships between lung dose from alpha-emitters and lung cancer in nuclear workers.

Methods: We conducted a case-control study, nested within Belgian, French, and UK cohorts of uranium and plutonium workers. Cases were workers who died from lung cancer; one to three controls were matched to each. Lung doses from alpha-emitters were assessed using bioassay data. We estimated excess odds ratio (OR) of lung cancer per gray (Gy) of lung dose.

Results: The study comprised 553 cases and 1,333 controls. Median positive total alpha lung dose was 2.42 mGy (mean: 8.13 mGy; maximum: 316 mGy); for plutonium the median was 1.27 mGy and for uranium 2.17 mGy. Excess OR/Gy (90% confidence interval)-adjusted for external radiation, socioeconomic status, and smoking-was 11 (2.6, 24) for total alpha dose, 50 (17, 106) for plutonium, and 5.3 (-1.9, 18) for uranium.

Conclusions: We found strong evidence for associations between low doses from alpha-emitters and lung cancer risk. The excess OR/Gy was greater for plutonium than uranium, though confidence intervals overlap. Risk estimates were similar to those estimated previously in plutonium workers, and in uranium miners exposed to radon and its progeny. Expressed as risk/equivalent dose in sieverts (Sv), our estimates are somewhat larger than but consistent with those for atomic bomb survivors.See video abstract at, http://links.lww.com/EDE/B232.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest.

Figures

FIGURE.
FIGURE.
Excess odds ratio (90% confidence intervals) for categorical analysis of alpha dose, adjusted for smoking, socioeconomic status, and external dose with trend from continuous analysis of alpha dose (90% confidence interval).

References

    1. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64. - PubMed
    1. UNSCEAR. UNSCEAR 2006 Report: Volume 1. Annex A: Epidemiological Studies of Radiation and Cancer. 2006Vienna, Austria;
    1. Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142:117–132. - PubMed
    1. Leuraud K, Richardson DB, Cardis E, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2:e276–e281. - PMC - PubMed
    1. Richardson DB, Cardis E, Daniels RD, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ. 2015;351:h5359. - PMC - PubMed

Publication types